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Abstract

We study the enumeration of Dyck paths having a first return de-
composition with special properties based on a height constraint. We
exhibit new restricted sets of Dyck paths counted by the Motzkin num-
bers, and we give a constructive bijection between these objects and
Motzkin paths. As a byproduct, we provide a generating function for
the number of Motzkin paths of height k with a flat (resp. with no
flats) at the maximal height.

Keywords: Enumeration, Dyck and Motzkin paths, first return decompo-
sition, statistics, height, peak.

1 Introduction and notations

A Dyck path of semilength n ≥ 0 is a lattice path starting at (0, 0), ending at
(2n, 0), and never going below the x-axis, consisting of up steps U = (1, 1)
and down steps D = (1,−1). Let Dn, n ≥ 0, be the set of all Dyck paths
of semilength n, and let D = ∪n≥0Dn. The cardinality of Dn is given by
the nth Catalan number, which is the general term 1

n+1

(2n
n

)
of the sequence

A000108 in the on-line encyclopedia of integer sequences of N.J.A. Sloane
[17]. A large number of various classes of combinatorial objects are enumer-
ated by the Catalan numbers such as planar trees, Young tableaux, stack
sortable permutations, Dyck paths, and so on. A list of over 60 types of such
combinatorial classes has been compiled by Stanley [19]. In combinatorics,
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many papers deal with Dyck paths. Most of them consist in enumerating
Dyck paths according to several parameters, such as length, number of peaks
or valleys, number of double rises, number of returns to the x-axis (see for
instance [2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18]). Other studies investigate
restricted classes of Dyck paths avoiding some patterns or having a specific
structure. For instance, Barcucci et al. [1] consider non-decreasing Dyck
paths which are those having a non-decreasing sequence of heights of valleys
(see also [6, 7]), and it is well known [5] that Dyck paths avoiding the triple
rise UUU are enumerated by the Motzkin numbers (see A001006 in [17]).

Any non-empty Dyck path P ∈ D has a unique first return decomposition
[8] of the form P = UαDβ where α and β are two Dyck paths in D. See
Figure 1 for an illustration of this decomposition.

α β

Figure 1: First return decomposition UαDβ of a Dyck path P ∈ D.

Based on this decomposition, we construct a new collection of subsets of
D as follows. Given a function s : D → N, called statistic, and a comparison
operator ⋄ on N (for instance ≥ or >), the set Ds,⋄ is the union of the
empty Dyck path with all Dyck paths P having a first return decomposition
P = UαDβ satisfying the three conditions:





α ∈ Ds,⋄,

β ∈ Ds,⋄,

s(UαD) ⋄ s(β).
(1)

For n ≥ 0, we denote by Ds,⋄
n the set of Dyck paths of semilength n in

Ds,⋄. Thus, we have Ds,⋄ =
⋃
n≥0

Ds,⋄
n .

For instance, if the operator ⋄ is = and s is a constant statistic (i.e.,
s(P ) = 0 for any P ∈ D), then we obviously have Ds,⋄

n = Dn for n ≥ 0.
If s is the number of returns (i.e., s(P ) is the number of down steps D

that returns the path P to the x-axis) and s(UαD)⋄s(β) is s(UαD) ≥ s(β),
then it is straightforward to see that Ds,≥

n consists of Dyck paths built over
the grammar S → ǫ | USD | USDUSD. So, the generating function
S(x) for the cardinalities of Ds,≥

n , n ≥ 0, satisfies the functional equation
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S(x) = 1+xS(x)+x2S(x)2. The solution of this equation is the well-known
generating function for the Motzkin numbers (A001006 in [17]).

In this paper, we focus on the sets Dh,⋄ where the statistic h is the
maximal height of a Dyck path, i.e., h(P ) is the maximal ordinate reached
by the path P .

In Section 2, we deal with the case in which operator ⋄ is a strict inequal-
ity >. We prove that the cardinalities of the sets Dh,>

n , n ≥ 0, are given by
the sequence A045761 in [17]. This sequence corresponds to the coefficients
of the series limk→∞ Pk(x) where Pk(x) is a polynomial recursively defined
by P0(x) = x, P1(x) = x2, Pk(x) = Pk−1(x) + Pk−2(x) if k is even, and
Pk(x) = Pk−1(x) · Pk−2(x) if k is odd.

In Section 3, we focus on the set Dh,≥ where h(UαD) ≥ s(β) (the oper-
ator ⋄ is ≥). Using generating functions and continued fractions, we prove

that the cardinalities of the Dh,≥
n , n ≥ 0, are given by the Motzkin numbers

(A001006 in [17]). Moreover, we give a constructive one-to-one correspon-

dence φ between Dyck paths in Dh,≥
n and Motzkin paths of length n. Also,

we show how φ transports peaks UD into peaks UD and flats F in Motzkin
paths. Finally, we deduce generating function for the popularity of peaks in
Dh,≥

n .
Table 1 presents the two main enumerative results of Dh,⋄

n obtained in
Sections 2 and 3.

⋄-constraint Sequence Sloane an, 1 ≤ n ≤ 9

h(UαD) > h(β) A045761 1, 1, 2, 3, 6, 12, 24, 50, 107

h(UαD) ≥ h(β) Motzkin A001006 1, 2, 4, 9, 21, 51, 127, 323, 835

Table 1: Cardinalities of Dh,⋄
n according to the ⋄-constraint.

2 Enumeration of Dh,>
n

In this section, we enumerate the set Dh,>
n of Dyck paths of semilength

n ≥ 0 with a first return decomposition satisfying h(UαD) > h(β) where h

is the maximal height of a Dyck path. For instance, we have Dh,>
1 = {UD},

Dh,>
2 = {UUDD}, and Dh,>

3 = {UUDDUD,UUUDDD}.
Let Ak(x) =

∑
n≥0 an,kx

n (resp. Bk(x) =
∑

n≥0 bn,kx
n) be the generat-

ing function where the coefficient an,k (resp. bn,k) is the number of Dyck
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paths in Dh,>
n with a maximal height equal to k (resp. of at most k). So, we

have Bk(x) =
k∑

i=0
Ai(x) and the generating function B(x) for the set Dh,>

n

is given by B(x) = lim
k→+∞

Bk(x).

Any Dyck path of height k in Ds,> is either empty, or of the form UαDβ

where α is a Dyck path in Ds,> of height k − 1 and β ∈ Ds,> such that
h(β) ≤ k − 1. So, we deduce easily the following functional equations:

{
A0(x) = B0(x) = 1,

Ak(x) = xAk−1(x) · Bk−1(x) for k ≥ 1.
(2)

Theorem 1 We have for k ≥ 0,

Bk(x) =
P2k(x)

x

where Pk is the polynomial recursively defined by P0(x) = x, P1(x) = x2,
P2k(x) = P2k−1(x) + P2k−2(x) and P2k+1(x) = P2k(x) · P2k−1(x). As conse-
quence, we have for k ≥ 1

Ak(x) =
P2k(x)− P2k−2(x)

x
,

and B(x) is generating function of the sequence A045761 in [17].

Proof. We proceed by induction on k. For k = 0, the property holds since
P0(x) = x = xB0(x). Assuming the property for 0 ≤ i ≤ k − 1, we prove it
for k. Taking into account that Ak(x) = Bk(x) − Bk−1(x) in equation (2),
we obtain

xBk(x) = xBk−1(x) + x2Bk−1(x)
(
Bk−1(x)−Bk−2(x)

)
.

With the recurrence hypothesis, we have

xBk(x) = P2k−2(x) + P2k−2(x)
(
P2k−2(x)− P2k−4(x)

)

= P2k−2(x) + P2k−2(x)P2k−3(x)

= P2k−2(x) + P2k−1(x) = P2k(x).

An induction on k completes the proof and the expression of Ak(x) is de-
duced from Ak(x) = Bk(x)−Bk−1(x). 2
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For instance, we have B2(x) = 1 + x + x2 + x3, B3(x) = 1 + x + x2 +
2x3 + 2x4 + 2x5 + 2x6 + x7, and the first ten terms of B(x) are 1 + x +
x2 + 2x3 + 3x4 + 6x5 + 12x6 + 24x7 + 50x8 + 107x9. We refer to Table 2
for an overview of the coefficients an,k for 1 ≤ n ≤ 10 and 1 ≤ k ≤ 9.

Notice that the family of sets Ds,>, n ≥ 1, seems to be the first example
of combinatorial objects enumerated by the sequence A045761 in [17].

k\n 1 2 3 4 5 6 7 8 9 10

1 1

2 1 1

3 1 2 2 2 1

4 1 3 5 8 11 13 15

5 1 4 9 18 33 56

6 1 5 14 33 71

7 1 6 20 54

8 1 7 27

9 1 . . .
∑

1 1 2 3 6 12 24 50 107 . . .

Table 2: Number an,k of Dyck paths of height k in Dh,>
n , 1 ≤ n ≤ 10 and

1 ≤ k ≤ 9.

3 Enumeration of Dh,≥
n

3.1 Using generating function

In this section, we enumerate the set Dh,≥
n of Dyck paths of semilength

n ≥ 0 with a first return decomposition satisfying h(UαD) ≥ h(β) where

h is the maximal height of a Dyck path. For instance, we have Dh,≥
1 =

{UD}, Dh,≥
2 = {UDUD,UUDD}, and Dh,≥

3 consists of the four Dyck paths
UDUDUD,UUDDUD,UUDUD and UUUDDD.

Let Ck(x) =
∑

n≥0 cn,kx
n (resp. Dk(x) =

∑
n≥0 dn,kx

n) be the gener-
ating function where the coefficient cn,k (resp. dn,k) is the number of Dyck

paths in Dh,≥
n with a maximal height equal to k (resp. of at most k). So, we
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have Dk(x) =
k∑

i=0
Ci(x) and the generating function D(x) for the set Dh,≥

n

is given by D(x) = lim
k→+∞

Dk(x).

Any Dyck path of height k in Ds,≥ is either empty, or of the form UαDβ

where α (resp. β) is a Dyck path in Ds,≥ of height k− 1 (resp. of height at
most k). So, we deduce the following functional equations:

{
C0(x) = 1,

Ck(x) = xCk−1(x) ·Dk(x) for k ≥ 1.
(3)

Theorem 2 provides recursive expressions for the two generating func-
tions Dk(x) and Ck(x). As a consequence, D(x) can be expressed as an
infinite product of terms 1

1−xCk(x)
.

Theorem 2 We have D0(x) = C0(x) = 1, C1(x) =
x

1−x
and

Dk(x) =

k−1∏

i=0

(
1− xCi(x)

)−1
for k ≥ 1,

Ck(x) =
C1(x)

k

∏k−1
i=1

(
1− xCi(x)

)k−i
for k ≥ 2,

and the generating function D(x) where the coefficient of xn is the cardinality

of Dh,≥
n satisfies

D(x) =
∞∏

i=0

(
1− xCi(x)

)−1
.

Proof. Since we have Ck(x) = Dk(x)−Dk−1(x), equation (3) implies

Dk(x) =
Dk−1(x)

1− xCk−1(x)
,

and starting from D0(x) = 1, a straightforward induction on k provides

Dk(x) =
k−1∏
i=0

(
1−xCi(x)

)−1
. Moreover, from equation (3) and C1(x) =

x
1−x

,

we deduce

Ck(x)

Ck−1(x)
= xDk(x) = C1(x)

k−1∏

i=1

(
1− xCi(x)

)−1
.
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An induction on k completes the proof. 2

Now, we will show how D(x) = lim
k→+∞

Dk(x) can be expressed as a

continued fraction. For this, let us define the function

f : u 7→
1

1−
x

1−
x

1− x2u

.

For n ≥ 1, we denote by fn the function recursively defined by fn(u) =
f
(
fn−1(u)

)
anchored with f0(u) = u. A simple calculation (using Maple

for instance) proves that the map f satisfies Remark 1.

Remark 1 If X = Y−1
x(xY+1) then the map f satisfies

f

(
Y

1− x(Y −X)

)
=

f(Y )

1− x
(
f(Y )− f(X)

) .

Lemma 1 For k ≥ 1, we have Dk−1(x) =
Dk(x)−1

x(xDk(x)+1) .

Proof. We proceed by induction on k. Since D0(x) = 1 and D1(x) =
1

1−x
,

it is easy to check that D0(x) =
D1(x)−1

x(xD1(x)+1) .

Assuming Di−1(x) =
Di(x)−1

x(xDi(x)+1) for 1 ≤ i ≤ k − 2, we prove the result

for i = k − 1. From equation (3) and the recurrence hypothesis on Dk−2(x)
we obtain

Dk(x) =
Dk−1(x)

1− x

(
Dk−1(x)− Dk−1(x)−1

x
(
xDk−1(x)+1

)
) .

Isolating Dk−1(x), we obtain Dk−1(x) = Dk(x)−1
x(xDk(x)+1) which completes the

induction. 2

Theorem 3 For k ≥ 0, we have

Dk(x) = f⌊k
4⌋(Dk mod 4(x)

)

with the initial cases D0(x) = 1, D1(x) = 1
1−x

, D2(x) = 1
1−x−x2 and

D3(x) =
1

1− x
1−x

. 2
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k\n 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 1 2 4 7 12 20 33 54 88

3 1 3 8 19 43 94 201 423

4 1 4 13 37 99 254 634

5 1 5 19 62 187 536

6 1 6 26 95 316

7 1 7 34 137

8 1 8 43

9 1 . . .
∑

1 2 4 9 21 51 127 323 835 . . .

Table 3: Number cn,k of Dyck paths of height k in Dh,≥
n , 1 ≤ n ≤ 10 and

1 ≤ k ≤ 9.

Proof. We proceed by induction on k. Since we have D0(x) = f0
(
D0(x)

)
,

D1(x) = f0
(
D1(x)

)
, D2(x) = f0

(
D2(x)

)
and D3(x) = f0

(
D3(x)

)
, the basic

case holds.
Assuming the result for 0 ≤ i ≤ k, we prove it for k + 1.
From equation (3) we have Dk+1(x) = Dk(x)

1−x
(
Dk(x)−Dk−1(x)

) . Using the

recurrence hypothesis for Dk(x) and Dk−1(x), we obtain for k ≥ 4:

Dk+1(x) =
f
⌊ k
4
⌋
(
Dk mod 4(x)

)

1−x

(

f
⌊ k
4
⌋
(
Dk mod 4(x)

)
−f

⌊ k−1
4

⌋
(
Dk−1 mod 4(x)

))

=
f

(

f
⌊ k−4

4
⌋
(
Dk−4 mod 4(x)

))

1−x

(

f

(

f
⌊ k−4

4
⌋(Dk−4 mod 4(x))

)

−f

(

f
⌊k−5

4
⌋(Dk−5 mod 4(x))

)) .

The recurrence hypothesis implies

Dk+1(x) =
f(Dk−4(x))

1−x
(
f(Dk−4(x))−f(Dk−5(x))

) ,

and using Remark 1, we deduce
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Dk+1(x) = f

(
Dk−4(x)

1−x
(
Dk−4(x)−Dk−5(x)

)
)

= f(Dk−3(x))

= f1+⌊k−3

4
⌋(Dk−3 mod 4(x)) = f ⌊k+1

4
⌋(Dk+1 mod 4(x)).

The induction is completed. 2

For instance, we have D13(x) =
1−6x+10x2−9x4+2x5+x6

1−7x+15x2−5x3−15x4+9x5+3x6−x7 and the

first terms of its Taylor expansion are 1 + x + 2x2 + 4x3 + 9x4 + 21x5 +
51x6+127x7+323x8+835x9+2188x10+5798x11+15511x12+41835x13+
113633x14 + 310557x15 + 853333x16.

Theorem 4 The sets Dh,≥
n , n ≥ 0, are enumerated by the Motzkin numbers.

Proof. We have D(x) = lim
k→+∞

Dk(x). Using Theorem 3, we directly obtain

that

D(x) =
1

1−
x

1−
x

1−
x2

1−
x

1−
x

1−
x2

1−
x

· · ·
which is the continued fraction for the Motzkin numbers (P. Barry [3]). 2

3.2 A constructive bijection

In this section, we exhibit a constructive bijection between Dh,≥
n and the set

Mn of Motzkin paths of length n, i.e., lattice paths starting at (0, 0), ending
at (n, 0), never going below the x-axis, consisting of up-steps U = (1, 1),
down steps D = (1,−1) and flat steps F = (1, 0). We set M = ∪n≥0Mn.

Let us define recursively the map φ from Dh,≥ to M as follows. For
P ∈ Dh,≥, we set
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φ(P ) =





ǫ if P = ǫ,

φ(α)F if P = αUD,

φ(α)φ(γ)Uφ(β)D if P = αUUβDγD.

Due to the recursive definition, the image by φ of a Dyck path of
semilength n is a Motzkin path of length n. For instance, the images of
UDUDUD, UUDDUD, UUDUDD, UUUDDD, UUUUDDDDUUUDDUDD

are respectively FFF , UDF , FUD, UFD and UUDDFUFD. We refer to
Figure 2 for an illustration of this mapping.

α
−→

φ(α)

α β γ

−→
φ(α) φ(γ) φ(β)

Figure 2: Illustration of the bijection between Dh,≥
n and Mn.

Remark 2 If α, β ∈ Dh,≥
n and αβ ∈ Dh,≥

n , then we have φ(αβ) = φ(α)φ(β).

Theorem 5 The map φ : Dh,≥
n → Mn defined above is a bijection satisfy-

ing for any P ∈ Dh,≥
n ,

h(φ(P )) =

⌊
h(P )

2

⌋
.

Proof. We proceed by induction on n. Obviously, for n = 1, we have
φ(UD) = F and h(F ) = 0 = ⌊h(UD)

2 ⌋. For k ≤ n, we assume that φ is a

bijection from Dh,≥
k to Mk such that h(φ(P )) = ⌊h(P )

2 ⌋ for any P ∈ Dh,≥
k ,

and we prove the result for n+ 1.
Using the enumerative result of Theorem 4, it suffices to prove that φ

is surjective from Dh,≥
n+1 to Mn+1. So, let M be a Motzkin path in Mn+1.

We distinguish two cases: (i) M = σF with σ ∈ Mn, and (ii) M = σUπD

where σ and π are two Motzkin paths in M.
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(i) Using the recurrence hypothesis, there is P ∈ Dh,≥
n such that σ =

φ(P ) and h(σ) = ⌊h(P )
2 ⌋. So, the Dyck path PUD belongs to Dh,≥

n+1 and

φ(PUD) = σF which proves that M belongs to the image by φ of Dh,≥
n+1.

Moreover we have h(φ(PUD)) = h(σF ) = h(σ) = ⌊h(P )
2 ⌋ = ⌊h(PUD)

2 ⌋.
(ii) We suppose M = σUπD. Let us define the longest suffix σs of σ

(possibly empty) such that σs ∈ M and h(φ−1(σs)) ≤ 1 + h(φ−1(π)) (σs
exists since the empty path ǫ satisfies the inequality, and the recurrence
hypothesis ensures the existence and the unicity of φ−1(σs) and φ−1(π)).
Let σr be the Motzkin path obtained from σ by deleting the suffix σs, and
let S ∈ Dh,≥

n (resp. R ∈ Dh,≥
n ) such that φ(S) = σs and h(σs) = ⌊h(S)2 ⌋

(resp. φ(R) = σr and h(σr) = ⌊h(R)
2 ⌋). Also there is T ∈ Dh,≥

n such that

φ(T ) = π with h(π) = ⌊h(T )
2 ⌋.

Due to the maximality of σs, σr is either empty or 1+h(T ) < h(φ−1(σrσs)).
Using Remark 2 we obtain h(φ−1(σrσs)) = h(RS) = h(R), and the last in-
equality can be written as 1 + h(T ) < h(R).

- If σr = ǫ then the condition h(S) ≤ 1 + h(T ) implies that UUTDSD

belongs toDh,≥
n and we have φ(UUTDSD) = φ(S)Uφ(T )D = σsUπD =

σUπD. Moreover, we have h(φ(UUTDSD)) = h(φ(S)Uφ(T )D) =

max{φ(S), 1+φ(T )} = max{⌊h(S)2 ⌋, 1+⌊h(T )
2 ⌋}. With h(S) ≤ 1+h(T ),

we deduce h(φ(UUTDSD)) = 1 + ⌊h(T )
2 ⌋ = ⌊h(T )+2

2 ⌋ = ⌊h(UUTDSD)
2 ⌋

as desired.

- If σr 6= ǫ then we have h(S) ≤ 1 + h(T ) < h(R) which implies that

the Dyck path RUUTDSD belongs to Dh,≥
n+1. Moreover, we have

h(φ(RUUTDSD)) = h(φ(R)φ(S)Uφ(T )D) = max{φ(R), φ(S), 1 +

φ(T )} = max{⌊h(R)
2 ⌋, ⌊h(S)2 ⌋, 1 + ⌊h(T )

2 ⌋}. From h(S) ≤ 1 + h(T ) <

h(R), we obtain ⌊h(S)+1
2 ⌋ ≤ ⌊h(T )+2

2 ⌋ ≤ ⌊h(R)
2 ⌋ which induces that

h(φ(RUUTDSD)) = ⌊h(R)
2 ⌋ = ⌊h(RUUTDSD)

2 ⌋ as desired.

The induction is completed. 2

Corollary 1 Let P be a Dyck path in Dh,≥
n , n ≥ 1. The Motzkin path φ(P )

contains a flat step F at height h(φ(P )) if and only if h(P ) is odd.

Proof. We proceed by induction on n. For n = 1, we have P = UD and
φ(P ) = F and the result holds since h(P ) = 1 is odd. Assuming the result
for i ≤ n, we prove it for n + 1. We distinguish two cases: (i) P = αUD

and (ii) P = αUUβDγD, where α, β and γ belong to Dh,≥.
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(i) For α 6= ǫ, the recurrence hypothesis means that φ(α) contains a
flat step F at height h(φ(α)) if and only if h(α) is odd. Since we have
φ(P ) = φ(α)F and h(P ) = h(α), φ(P ) contains a flat step F a height
h(φ(P )) = h(φ(α)) if and only if h(P ) is odd.

(ii) If P = αUUβDγD then we have h(α) ≥ 2 + h(β) ≥ 1 + h(γ) and
φ(P ) = φ(α)φ(γ)Uφ(β)D.

- As we have done in (i), a flat step F appears at height h(φ(P )) =
h(φ(α)) in φ(α) if and only if h(α) = h(P ) is odd.

- φ(P ) contains a flat step at height h(φ(P )) in φ(β) if and only if a flat
step appears at height h(φ(β)) in φ(β) and h(φ(P )) = h(φ(β)) + 1,

i.e., ⌊h(P )
2 ⌋ = ⌊h(β)2 ⌋ + 1. Using the recurrence hypothesis, this is

equivalent to h(β) is odd, which means 2⌊h(P )
2 ⌋ = h(β) + 1. Since

h(P ) ≥ h(β) + 2, this is equivalent to h(P ) = h(β) + 2 and thus h(P )
is odd.

- Let us prove by contradiction that a flat step cannot occur at height
h(φ(P )) in φ(γ). Indeed, this should imply the following:

h(φ(P ) = h(φ(γ)) ≥ 1 + h(φ(β)).

With Theorem 5 we obtain
⌊
h(γ)

2

⌋
≥ 1 +

⌊
h(β)

2

⌋
.

Due to the recurrence hypothesis, h(γ) is odd, so
⌊
1 + h(γ)

2

⌋
− 1 ≥

⌊
2 + h(β)

2

⌋
, and

⌊
h(UγD)

2

⌋
>

⌊
h(UUβDD)

2

⌋
,

which implies
h(UγD) > h(UUβDD).

This last inequality contradicts P ∈ Dh,≥.

The induction is completed. 2

As a byproduct, we derive in Corollary 2 three generating functions for
the number of Motzkin paths of height k according to a constraint on the
maximal height of a flat. The two first results do not seems to appear in
the literature, while the third is presented in [4]. See Tables 4 and 5 for
numerical data.
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Corollary 2 The generating function Mk(x) where the coefficient of xn is
the number Motzkin paths in Mn of height exactly k and where there is a
flat F at height k is

Mk(x) = D2k+1(x)−D2k(x).

The generating function M̂k(x) where the coefficient of xn is the number
Motzkin paths in Mn of height exactly k and where there is no flat F at
height k is

M̂k(x) = D2k(x)−D2k−1(x).

The generating function Mk(x) where the coefficient of xn is the number
Motzkin paths in Mn of height exactly k is

Mk(x) = D2k+1(x)−D2k−1(x).

Proof. The proof is directly deduced from Theorem 5 and Corollary 1. 2

For instance, we have M 1(x) =
x3

(1−2x)(1−x−x2)
and the first terms of its

Taylor expansion are x3+3x4+8x5+19x6+43x7+94x8+201x9+423x10+
880x11 (see sequence A008466 in [17]). Also, M̂1(x) =

x2

(1−x−x2)(1−x)
and the

first terms of its Taylor expansion are x2+2x3+4x4+7x5+12x6+20x7+
33x8 + 54x9 + 88x10 + 143x11 (see sequence A000071 in [17]). Notice that

the two sequences defined by
∑
k≥0

Mk(x) and
∑
k≥0

M̂k(x) do not appear in

[17]. We leave open the question of finding closed forms for their generating
functions.

Corollary 3 The bivariate generating function Q(x, y) where the coefficient

of xnyk is the number of Dyck paths of Dh,≥
n containing exactly k peaks UD

is

1−x2y+x2−xy−
√

x4y2−2 x4y+2x3y2+x4−2 x3y+x2y2−2 x2y−2 x2−2 xy+1

2x2
.

Proof. Due to the recursive definition of the bijection φ, the number of peaks
UD in Dyck paths of Dh,≥

n is equal to the number of peaks UD and flats F
in Motzkin paths in Mn. Since a non empty Motzkin path in M is either
αF or αUβD where α, β ∈ M, the generating function Q(x, y) satisfies the
functional equation Q(x, y) = 1 + xyQ(x, y) + x2yQ(x, y) + x2Q(x, y)2. A
simple calculation (with Maple for instance) completes the proof. 2

As a consequence, we deduce in Corollary 4 the popularity of peaks in
Dh,≥

n .
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k\n 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1

1 1 3 8 19 43 94 201 423

2 1 5 19 62 187 536

3 1 7 34 137

4 1 9
∑

1 1 2 4 10 25 64 164 424 1106

Table 4: Number of Motzkin paths of length n and height k with a flat at
height k, 1 ≤ n ≤ 10 and 0 ≤ k ≤ 4.

k\n 1 2 3 4 5 6 7 8 9 10

1 1 2 4 7 12 20 33 54 88

2 1 4 13 37 99 254 634

3 1 6 26 95 316

4 1 8 43

5 1
∑

0 1 2 5 11 26 63 159 411 1082

Table 5: Number of Motzkin paths of length n and height k with no flats at
height k, 1 ≤ n ≤ 10 and 1 ≤ k ≤ 5.

Corollary 4 The generating function where the coefficient of xn is the total
number of peaks in all Dyck paths of Dh,≥

n is

1− x2 − (1 + x)
√
1− 2x− 3x2

2x
√
1− 2x− 3x2

.

Proof. Using Corollary 3, the result is given by ∂Q(x,y)
∂y

⌋y=1. 2

The popularity of peaks in Dh,≥
n , n ≥ 1, is given by the sequence A025566

in [17]. The first terms are x+3x2+8x3+22x4+61x5+171x6 +483x7+
1373x8 + 3923x9 + 11257x10.

We say that a peak UD is odd whenever the maximal sub-path of the
form UkD that contains it has an odd number of U -steps, i.e., k is odd.
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Corollary 5 The bivariate generating function R(x, y) where the coefficient

of xnyk is the number of Dyck paths of Dh,≥
n containing exactly k odd peaks

UD is
2− xy −

√
1− 2xy − 4x2 + x2y2

2x2
.

Proof. Using the recursive definition of φ, it is easy to check that the number
of odd peaks on Dh,≥

n is also the number of flats on Mn. Since a non empty
Motzkin path in M is either αF or αUβD where α, β ∈ M, the generating
function R(x, y) satisfies the functional equation R(x, y) = 1 + xyR(x, y) +
x2R(x, y)2. A simple calculation (with Maple for instance) completes the
proof. 2

Corollary 6 The generating function where the coefficient of xn is the total
number of odd peaks in all Dyck paths of Dh,≥

n is

1− x−
√
1− 2x− 3x2

2x
√
1− 2x− 3x2

.

Proof. Using Corollary 5, the result is given by ∂R(x,y)
∂y

⌋y=1. 2

The popularity of odd peaks is given by the sequence A005717 in [17].
The first terms are x+2x2+6x3+16x4+45x5+126x6+357x7+1016x8+
2907x9 + 8350x10.
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