Dyck paths with a first return decomposition
constrained by height

Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian
LE2I UMR-CNRS 6306, Université de Bourgogne
B.P. 47 870, 21078 DIJON-Cedex France

e-mail:{barjl,sergey.kirgizov,armen.petrossian}@u-bourgogne.fr

June 6, 2017

Abstract

We study the enumeration of Dyck paths having a first return de-
composition with special properties based on a height constraint. We
exhibit new restricted sets of Dyck paths counted by the Motzkin num-
bers, and we give a constructive bijection between these objects and
Motzkin paths. As a byproduct, we provide a generating function for
the number of Motzkin paths of height k& with a flat (resp. with no
flats) at the maximal height.

Keywords: Enumeration, Dyck and Motzkin paths, first return decompo-
sition, statistics, height, peak.

1 Introduction and notations

A Dyck path of semilength n > 0 is a lattice path starting at (0,0), ending at
(2n,0), and never going below the x-axis, consisting of up steps U = (1,1)
and down steps D = (1,—1). Let D,, n > 0, be the set of all Dyck paths
of semilength n, and let D = U,>¢D,,. The cardinality of D,, is given by
the nth Catalan number, which is the general term n%rl (27:‘) of the sequence
A000108 in the on-line encyclopedia of integer sequences of N.J.A. Sloane
[17]. A large number of various classes of combinatorial objects are enumer-
ated by the Catalan numbers such as planar trees, Young tableaux, stack
sortable permutations, Dyck paths, and so on. A list of over 60 types of such

combinatorial classes has been compiled by Stanley [19]. In combinatorics,


https://oeis.org/A000108

many papers deal with Dyck paths. Most of them consist in enumerating
Dyck paths according to several parameters, such as length, number of peaks
or valleys, number of double rises, number of returns to the z-axis (see for
instance [2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18]). Other studies investigate
restricted classes of Dyck paths avoiding some patterns or having a specific
structure. For instance, Barcucci et al. [1] consider non-decreasing Dyck
paths which are those having a non-decreasing sequence of heights of valleys
(see also [6, 7]), and it is well known [5] that Dyck paths avoiding the triple
rise UUU are enumerated by the Motzkin numbers (see A001006 in [17]).

Any non-empty Dyck path P € D has a unique first return decomposition
[8] of the form P = UaDf where a and 8 are two Dyck paths in D. See
Figure 1 for an illustration of this decomposition.

Figure 1: First return decomposition UaDf of a Dyck path P € D.

Based on this decomposition, we construct a new collection of subsets of
D as follows. Given a function s : D — N, called statistic, and a comparison
operator ¢ on N (for instance > or >), the set D%° is the union of the
empty Dyck path with all Dyck paths P having a first return decomposition
P = UaDg satisfying the three conditions:

a € D5°,
B e D, (1)
s(UaD) o s(f).

For n > 0, we denote by D;° the set of Dyck paths of semilength n in
D*°. Thus, we have D*° = |J Dy°.

n>0

For instance, if the operator ¢ is = and s is a constant statistic (i.e.,
s(P) = 0 for any P € D), then we obviously have D,;° = D,, for n > 0.

If s is the number of returns (i.e., s(P) is the number of down steps D
that returns the path P to the z-axis) and s(UaD)<s(8) is s(UaD) > s(),
then it is straightforward to see that D52 consists of Dyck paths built over
the grammar S — e | USD | USDUSD. So, the generating function
S(z) for the cardinalities of DZ’Z, n > 0, satisfies the functional equation
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S(z) = 14+ 25(x) +22S(x)?. The solution of this equation is the well-known
generating function for the Motzkin numbers (A001006 in [17]).

In this paper, we focus on the sets D"® where the statistic h is the
maximal height of a Dyck path, i.e., h(P) is the maximal ordinate reached
by the path P.

In Section 2, we deal with the case in which operator ¢ is a strict inequal-
ity >. We prove that the cardinalities of the sets ph> , n >0, are given by
the sequence A045761 in [17]. This sequence corresponds to the coefficients
of the series limg_, o, Px(x) where Pg(zx) is a polynomial recursively defined
by Py(x) = z, Pi(x) = 22, Py(x) = Py_1(x) + Py_a(z) if k is even, and
Pk(:E) = Pk_l(l’) . Pk_g(l’) if £ is odd.

In Section 3, we focus on the set D= where h(UaD) > s(f3) (the oper-
ator ¢ is >). Using generating functions and continued fractions, we prove
that the cardinalities of the DQ’Z, n > 0, are given by the Motzkin numbers
(A001006 in [17]). Moreover, we give a constructive one-to-one correspon-
dence ¢ between Dyck paths in Dz’z and Motzkin paths of length n. Also,
we show how ¢ transports peaks UD into peaks UD and flats F' in Motzkin
paths. Finally, we deduce generating function for the popularity of peaks in
D=

Table 1 presents the two main enumerative results of DQ’Q obtained in
Sections 2 and 3.

o-constraint Sequence Sloane an,1 <n <9

h(UaD) > h(B) A045761 | 1,1,2,3,6,12,24,50,107
hUaD) > h(8) | Motzkin | A001006 | 1,2,4,9,21,51,127,323, 835

Table 1: Cardinalities of DZ’O according to the ¢-constraint.

2 Enumeration of D>

In this section, we enumerate the set D> of Dyck paths of semilength
n > 0 with a first return decomposition satisfying h(UaD) > h() where h
is the maximal height of a Dyck path. For instance, we have D?’> ={UD},
D) = {UUDD}, and D> = {UUDDUD,UUUDDD}.

Let Ap(x) = >, 50 ankx™ (resp. Bi(x) =, ~0bnk2") be the generat-
ing function where the coefficient ap,j (resp. bn,;) is the number of Dyck
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paths in Dh with a maximal height equal to k (resp. of at most k). So, we
have By(x) = Z A;(z) and the generating function B(z) for the set DI~
is given by B(z ) = lim Byg(z).

k——+4o00

Any Dyck path of height k in D%~ is either empty, or of the form UaDg3
where a is a Dyck path in D%~ of height k — 1 and 8 € D%~ such that
h(B) <k —1. So, we deduce easily the following functional equations:

A0($) = BO(gj) =1, (2)
Ag(x) =xzAg_1(z) - Bg_1(x) for k > 1.
Theorem 1 We have for k > 0,
Po(x
By(x) = L
T

where Py, is the polynomial recursively defined by Py(x) = x, Pi(x) = 22,

Py (2) = Pop—1(x) + Pop—2(x) and Popy1(x) = Poy(x) - Pop—1(x). As conse-
quence, we have for k > 1
Por(x) — Por_o(x
Ap(z) = ok (2) — Pag—a( )7

xT

and B(x) is generating function of the sequence A045761 in [17].

Proof. We proceed by induction on k. For k = 0, the property holds since
Py(x) = © = xBy(x). Assuming the property for 0 < ¢ < k — 1, we prove it
for k. Taking into account that Ax(z) = By(z) — Bi—1(z) in equation (2),
we obtain

ka(x) = ka_l(a:) + $2Bk_1(1’) (Bk_l(x) — Bk_g(x)).
With the recurrence hypothesis, we have
eBi(z) = Pop—2(x) + Pop—o(2)(Pog—2(x) — Pop—a(x))
P.

= Popo(w) + Pop—2(z) Pop—3(= )
= Pop_a(x) + Pop—1(x) = Por(x).

An induction on k completes the proof and the expression of Ag(x) is de-
duced from Ag(xz) = Bg(z) — Br_1(x). O
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For instance, we have Ba(z) = 1+ 2 + 2% + 23, B3(z) = 1 + = + 2?2 +
223 +22* + 225 + 225 4+ 27, and the first ten terms of B(z) are 1 + z +
2?2+ 223 + 324 + 625 4+ 122% + 2427 +502% 4 107 2. We refer to Table 2
for an overview of the coefficients a,  for 1 <n <10 and 1 <k < 9.

Notice that the family of sets D%~, n > 1, seems to be the first example
of combinatorial objects enumerated by the sequence A045761 in [17].

K\n{1l 2 3 45 6 7 8 9 10
1 ]1
2 11
3 12 2 2 1
4 13 5 &8 11 13 15
) 1 4 9 18 33 56
6 1 5 14 33 71
7 1 6 20 54
8 1 7 27
9 1

> |1 1 2 3 6 12 24 50 107

Table 2: Number a,, ;, of Dyck paths of height k in D2’>, 1 <n<10 and
1<k <9.

3 Enumeration of D=

3.1 Using generating function

In this section, we enumerate the set DZ’Z of Dyck paths of semilength
n > 0 with a first return decomposition satisfying h(UaD) > h(S) where
h is the maximal height of a Dyck path. For instance, we have D?’Z =
{UD}, Dg’z ={UDUD,UUDD}, and Dg’z consists of the four Dyck paths
UDUDUD,UUDDUD,UUDUD and UUUDDD.

Let Cix(x) = > >0 Cn k™ (resp. Di(z) = >, ~0dnk2™) be the gener-
ating function where the coefficient Cn i (resp. dmkj is the number of Dyck
paths in D2 with a maximal height equal to k (resp. of at most k). So, we
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k
have D (z) = Z .(z) and the generating function D(z) for the set D=

1=0

is given by D(x) = l1m Dy (z).

Any Dyck path of helght k in D*Z is either empty, or of the form UaDp3
where a (resp. 3) is a Dyck path in D*Z of height k — 1 (resp. of height at
most k). So, we deduce the following functional equations:

{ Colw) =1, 3
Ci(z) =2Ck_1(z) - Di(z) for k > 1.

Theorem 2 provides recursive expressions for the two generating func-
tions Dg(x) and Ck(z). As a consequence, D(x) can be expressed as an
infinite product of terms #Ck(m)

Theorem 2 We have Dy(x) = Co(x) =1, C1(x) = 1% and

k-1
Di(z) = [ (1 — 2Ci(2)) ™" for k > 1,
i=0
Cy(x)k
[T (1 - 2Ci() "
and the generating function D(z) where the coefficient of x™ is the cardinality

of ph= satisfies
o
H 1 —xCi(x 1.
=0

Cr(z) =

= for k> 2,

Proof. Since we have Cy(x) = Di(z) — Di—1(z), equation (3) implies

_ Dia()
Dy(z) = T 2Cr (1) xC’;_l(:n)’

and starting from Dg(z) = 1, a straightforward induction on k provides

Di(z)=TI (1 —a:Ci(a:)) . Moreover, from equation (3) and Cy(z) = 1%,
i=0
we deduce
k—1
— 2Dy(z) = Ci(z) [] (1 — 2Cy(z)) .
1

Cr(z)
Cr-1(x)

.
Il



An induction on k& completes the proof. a
Now, we will show how D(z) = klim Dy (z) can be expressed as a
—+00

continued fraction. For this, let us define the function

1— ——
1 —22u

For n > 1, we denote by f™ the function recursively defined by f"(u) =

f(f"*(u)) anchored with f°(u) = u. A simple calculation (using Maple

for instance) proves that the map f satisfies Remark 1.

Remark 1 If X = % then the map f satisfies

Y _ fY)
d (1 —SU(Y—X)) C1-a(f(Y) - (X))

Lemma 1 For k > 1, we have Dj_1(x) = I NEESIE

Proof. We proceed by induction on k. Since Do(z) = 1 and D;(z) = 11,

—T

it is easy to check that Dy(z) = %.
Assuming D;_;(x) = % for 1 <¢ < k — 2, we prove the result

for i = k — 1. From equation (3) and the recurrence hypothesis on Dj_o(x)
we obtain
Dy—1(x)

1—a (Dk_l(:n) — Penl@)l >

x(ka,l(gE)—l—l)

Dy(z) =

Isolating Dy_1(z), we obtain Dy_1(z) = % which completes the

induction. O

Theorem 3 For k > 0, we have

Di(x) = fLi1(Dg moa 4())

with the initial cases Do(z) = 1, Di(z) = 1=, Da(z) = ﬁ and
D3 () = == 0
1—-x



E\n|l 2 3 4 5 6 7 8 9 10
111111 1 1 1 1
2 1 2 4 7 12 20 33 54 88
3 1 3 8 19 43 94 201 423
4 1 4 13 37 99 254 634
5 1 5 19 62 187 536
6 1 6 26 95 316
7 1 7T 34 137
8 8 43
9 1

> 11 2 4 9 21 51 127 323 835

Table 3: Number ¢, of Dyck paths of height % in Dﬁ’z, 1 <n <10 and
1<k<9.

Proof. We proceed by induction on k. Since we have Dy(z) = f°(Do()),
Di(z) = fO(D1(x)), Da(x) = f°(D2(z)) and D3(x) = f°(Ds(z)), the basic
case holds.

Assuming the result for 0 < i < k, we prove it for k£ + 1.

From equation (3) we have Dygiq(z) = D)
E ®) k() 1—I(Dk(1‘)—Dk71(~’U))
recurrence hypothesis for Dy (z) and Dy_1(x), we obtain for k > 4:

. Using the

flal (Dk mod 4(1‘))
1—90(fL§J (Dk mod zx(ﬂﬂ))—fL%J (Dk—l mod 4(90)))
f(kajTAJ (Dk74 mod 4(1‘))

1—w(f(ft%l (Dk—4 moa 4<w>)) —f(fL%J (Dk—5 moa 4(m)>)) '

Dy11(7)

The recurrence hypothesis implies

D _ f(Dr—4(x)) ,
k1(2) 1_1,(f(Dk74(x))—f(Dk75(x)))

and using Remark 1, we deduce




Disi(z) =f <1_m( Dia@) )> = f(Di-3())

Dy _4(xz)—Dr—5(x)

14| k=3 E+1
= U (D g mod a(2)) = FLU4 (Dt 1 moa a(2)).-
The induction is completed. O
. _ 2_ 4 5 6
For instance, we have Dq3(x) = 1_7xi156 f2t150§3—195241292512 —s—7 and the

first terms of its Taylor expansion are 1 4+ 4+ 222 + 423 + 9% + 212° +
51 29+127 27 +323 284835 2 +2188 210 + 5798 11 +15511 212 + 41835 213 +
113633 2 + 310557 215 + 853333 6.

Theorem 4 The sets DZ’Z, n > 0, are enumerated by the Motzkin numbers.

Proof. We have D(x) = klim Dy(z). Using Theorem 3, we directly obtain
—+00
that

D(z) =

1-— =

which is the continued fraction for the Motzkin numbers (P. Barry [3]). O

3.2 A constructive bijection

In this section, we exhibit a constructive bijection between D2 and the set
M,, of Motzkin paths of length n, i.e., lattice paths starting at (0,0), ending
at (n,0), never going below the z-axis, consisting of up-steps U = (1,1),
down steps D = (1, —1) and flat steps F' = (1,0). We set M = U,>oM,,.

Let us define recursively the map ¢ from D"Z to M as follows. For
P € D2, we set



€ if P=c¢,
¢(P) =1 ¢(a)F if P=aUD,
H()$()UG(B)D it P = aUUBDAD.
Due to the recursive definition, the image by ¢ of a Dyck path of
semilength n is a Motzkin path of length n. For instance, the images of
UDUDUD,UUDDUD, UUDUDD,UUUDDD, UUUUDDDDUUUDDUDD

are respectively FFF, UDF, FUD, UFD and UUDDFUFD. We refer to
Figure 2 for an illustration of this mapping.

Figure 2: Illustration of the bijection between D2 and M,,.

Remark 2 Ifa,f € D2 and af € DZ’Z, then we have ¢p(af) = ¢p(a)d(B).

Theorem 5 The map ¢ : phz M., defined above is a bijection satisfy-
. h,>
ing for any P € Dp'=,
h(P)
h(o(P)) = {TJ :

Proof. We proceed by induction on n. Obviously, for n = 1, we have
¢(UD) = F and h(F) =0 = Lh(gD)J. For k < n, we assume that ¢ is a
bijection from DZ’Z to M, such that h(¢(P)) = L@j for any P € DZ’Z,
and we prove the result for n + 1.

Using the enumerative result of Theorem 4, it suffices to prove that ¢
is surjective from DZ’EI to Myy1. So, let M be a Motzkin path in M,,41.
We distinguish two cases: (i) M = oF with o0 € M,,, and (i) M = cUnD
where ¢ and 7 are two Motzkin paths in M.

10



(7) Using the recurrence hypothesis, there is P € DpZ such that o =
¢(P) and h(o) = Lh(P |. So, the Dyck path PUD belongs to Dh> and
¢(PUD) = oF which proves that M belongs to the image by ¢ of Dn+1
Moreover we have h(¢p(PUD)) = h(oF) = h(o) = Lh(zp | = Lh(PgD)j.

(1) We suppose M = oUnD. Let us define the longest suffix o5 of o
(possibly empty) such that o5 € M and h(¢~1(0s)) < 1+ h(¢~1(n)) (0
exists since the empty path e satisfies the inequality, and the recurrence
hypothesis ensures the existence and the unicity of ¢~!(cs) and ¢~!()).
Let 0, be the Motzkin path obtained from o by deleting the suffix o4, and
let S € DI (resp. R € D[Z) such that ¢(S) = o, and h(o,) = L@J
(resp. ¢(R) = o, and h(o,) = L@J) Also there is T € D> such that
¢(T) = 7 with h(r) = |11,

Due to the maximality of o, 0, is either empty or 14+h(T) < h(¢~(0,04)).
Using Remark 2 we obtain h(¢~!(0,0,)) = h(RS) = h(R), and the last in-
equality can be written as 1 + h(7) < h(R).

- If 0, = € then the condition h(S) < 1+ h(T") implies that UUT DSD
belongs to P> and we have p(UUTDSD) = ¢p(SYUp(T)D = osUnD =
oUnD. Moreover, we have h((b(UUTDSD)) h(p(S)UP(T)D) =
max{¢(S), 1+¢(T)} = max{| 23, 1+L J} Wlth h(S) < 1+h(T),
we deduce h(¢(UUTDSD)) = 1 + |20 | — | 2O)+2 ) _ | WUUTDSD) |
as desired.

- If 0, # € then we have h(S) < 1+ h(T) < h(R) which implies that
the Dyck path RUUTDSD belongs to DZ’EI. Moreover, we have
h(¢(RUUTDSD)) = h(¢(R)p(S )Ufb( )D) = max{¢(R),$(5),1 +
S(T)} = max{ |2 | 221 4+ 2D From A(S) < 1+ W(T) <
h(R), we obtain Lh(s < Lh(T +2J < Lh(RJ which induces that
h¢(RUUTDSD)) = Lh(2R | = Lh(RUUzTDSD)j as desired.

The induction is completed. O

Corollary 1 Let P be a Dyck path in D", n > 1. The Motzkin path o(P)
contains a flat step F at height h(¢(P)) if and only if h(P) is odd.

Proof. We proceed by induction on n. For n = 1, we have P = UD and
¢(P) = F and the result holds since h(P) = 1 is odd. Assuming the result
for i < n, we prove it for n + 1. We distinguish two cases: (i) P = aUD
and (ii) P = aUUBD~yD, where «, 3 and v belong to D™=,

11



(1) For a # €, the recurrence hypothesis means that ¢(«) contains a
flat step F' at height h(¢(«)) if and only if h(a) is odd. Since we have
¢(P) = ¢(a)F and h(P) = h(a), ¢(P) contains a flat step F a height
h(¢(P)) = h(¢(a)) if and only if h(P) is odd.

(13) If P = aUUBD~D then we have h(a) > 2+ h(8) > 1+ h() and
P(P) = ¢(a)p(7)U(B)D.

- As we have done in (i), a flat step I’ appears at height h(¢(P)) =
h(¢()) in ¢(a) if and only if h(a) = h(P) is odd.

- ¢(P) contains a flat step at height h(¢(P)) in ¢(8) if and only if a flat
step appears at height h(4(3)) in ¢(3) and h(¢(P)) = h(é(8)) + 1,
i.e., L@J = L@J + 1. Using the recurrence hypothesis, this is
equivalent to h(f) is odd, which means 2L@J = h(B) + 1. Since
h(P) > h(B) + 2, this is equivalent to h(P) = h(3) + 2 and thus h(P)
is odd.

- Let us prove by contradiction that a flat step cannot occur at height
h(¢(P)) in ¢(7y). Indeed, this should imply the following:

h(@(P) = h(é(7)) = 1+ h(#(B)).
With Theorem 5 we obtain

=)

Due to the recurrence hypothesis, h(7) is odd, so

4 ) 22 00,
which implies
h(U~D) > h(UUBDD).

This last inequality contradicts P € D™=,

The induction is completed. O

As a byproduct, we derive in Corollary 2 three generating functions for
the number of Motzkin paths of height k according to a constraint on the
maximal height of a flat. The two first results do not seems to appear in
the literature, while the third is presented in [4]. See Tables 4 and 5 for
numerical data.

12



Corollary 2 The generating function My (x) where the coefficient of ™ is
the number Motzkin paths in M, of height exactly k and where there is a
flat F' at height k is

My(x) = Dagy1(x) — Dok(x).

The generating function ]\/Zk(:n) where the coefficient of ™ is the number
Motzkin paths in M, of height exactly k and where there is no flat F at
height k is .

My(z) = Do(x) — Daj—1(z).

The generating function My (z) where the coefficient of x™ is the number
Motzkin paths in M, of height exactly k is

My (x) = Dopy1(x) — Dog—1(x).

Proof. The proof is directly deduced from Theorem 5 and Corollary 1. O

For instance, we have M{(z) = Wi_m_mg) and the first terms of its
Taylor expansion are 3 +3 z*+8 25 +19 26 +4§\x7 +94 284201 27 +423 210+
880 1! (see sequence A008466 in [17]). Also, M;(x) = ?—:ﬁm and the
first terms of its Taylor expansion are z2+ 223 +42* +72° +1225 4+ 2027 +
3328 + 5427 + 88210 4+ 143 2! (see sequence A000071 in [17]). Notice that

the two sequences defined by > My(z) and > ]\/Zk(a;) do not appear in
k>0 k>0
[17]. We leave open the question of finding closed forms for their generating

functions.

Corollary 3 The bivariate generating function Q(x,y) where the coefficient
of x™y* is the number of Dyck paths of D= containing exactly k peaks UD
18

17m2y+m275cy7\/a:4y272 zdy+223y2 42t 203 y+a2y2—222y—222—2xy+1
22 ’

Proof. Due to the recursive definition of the bijection ¢, the number of peaks
UD in Dyck paths of Dz’z is equal to the number of peaks UD and flats F’
in Motzkin paths in M,,. Since a non empty Motzkin path in M is either
aF or aUBD where a, f € M, the generating function Q(z,y) satisfies the
functional equation Q(z,y) = 1 + zyQ(x,y) + 2%yQ(z,y) + 22Q(z,y)%. A
simple calculation (with Maple for instance) completes the proof. O

, >As a consequence, we deduce in Corollary 4 the popularity of peaks in
Dp=.

13
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E\n{1l 2 3 4 5 6 7 8 9 10
11111 1 1 1 1 1

1 3 8 19 43 94 201 423

1 5 19 62 187 536

1 7 34 137
1 9
> 11 1 2 4 10 25 64 164 424 1106

= W NN = O

Table 4: Number of Motzkin paths of length n and height k with a flat at
height k£, 1 <n <10 and 0 < k < 4.

E\n{1l 2 3 4 5 6 7 8 9 10
1 12 4 7 12 20 33 54 88
2 1 4 13 37 99 254 634
3 1 6 26 95 316
4 1 8 43
5 1

>0 1 2 5 11 26 63 159 411 1082

Table 5: Number of Motzkin paths of length n and height k£ with no flats at
height k, 1 <n <10and 1 <k <5.

Corollary 4 The generating function where the coefficient of x™ is the total
number of peaks in all Dyck paths of D2 s

1—22—(1+2)V1—-2x— 322
20V1 — 22 — 322 '

Proof. Using Corollary 3, the result is given by %Z’y)b:l- O
The popularity of peaks in DQ’Z, n > 1, is given by the sequence A025566
n [17]. The first terms are 4+ 322 + 823 +222* + 6125 + 17125+ 48327 +
1373 2% 4 3923 2% + 11257 210,
We say that a peak UD is odd whenever the maximal sub-path of the
form UFD that contains it has an odd number of U-steps, i.e., k is odd.

14
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Corollary 5 The bivariate generating function R(x,y) where the coefficient
of x™y* is the number of Dyck paths of ph= containing exactly k odd peaks
UD is

2 — a2y —/1— 22y — 422 + 122
222 ’

Proof. Using the recursive definition of ¢, it is easy to check that the number
of odd peaks on D2 is also the number of flats on M,,. Since a non empty
Motzkin path in M is either oF or aUSD where o, 8 € M, the generating
function R(z,y) satisfies the functional equation R(z,y) =1+ xyR(z,y) +
2?R(x,y)%. A simple calculation (with Maple for instance) completes the
proof. a

Corollary 6 The generating function where the coefficient of x™ is the total
number of odd peaks in all Dyck paths of D2 s

1l—2z—+vV1—-2x— 322
20vV/1— 2z — 322

Proof. Using Corollary 5, the result is given by %Z’wjyzl' O

The popularity of odd peaks is given by the sequence A005717 in [17].
The first terms are x +2 22 +6 23+ 16 21 +45 25 +126 25 + 35727 + 1016 2% +
2907 z¥ + 8350 210,
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