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Abstract

Grand Dyck paths with air pockets (GDAP) are a generalization of
Dyck paths with air pockets by allowing them to go below the z-axis.
We present enumerative results on GDAP (or their prefixes) subject to
various restrictions such as maximal/minimal height, ordinate of the
last point and particular first return decomposition. In some special
cases we give bijections with other known combinatorial classes.

1 Introduction

In a recent paper [2], the authors introduce and study a new class of lattice
paths, called Dyck paths with air pockets (DAP for short). Such a path is
a non empty lattice path in the first quadrant of Z? starting at the origin,
ending on the z-axis, and consisting of up-steps U = (1, 1) and down-steps
Dy = (1,—k), k = 1, where two down steps cannot be consecutive. See
Figure [I] for an example. These paths can be viewed as ordinary Dyck paths
where each maximal run of down-steps is condensed into one large down step.
As mentioned in [2], they also correspond to a stack evolution with (partial)
reset operations that cannot be consecutive (see for instance [5]). In this
paper, we generalize these paths to grand Dyck path with air pockets (GDAP
for short), which have the same definition as DAP, except that they can go
below the z-axis, and the empty path € is considered as a GDAP.
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The main goal is to make enumerative studies on GDAP (or prefix of
these paths) with various restrictions on the maximal height reached, minimal
height reached, height of the last point, ...

The remaining of this paper is structured as follows. The next section
recalls some useful results from [2] and introduces several notations for
particular subsets of GDAP. The main result of Section 3 is Theorem [I] which
gives the generating function counting the GDAP with respect to the length,
which is the ‘grand’ counterpart of the generating function in for DAP.
In Section 4 we give similar results for prefixes of GDAP ending at a given
ordinate, the corresponding problem for DAP being already solved in [I0]. In
Section 5, we provide generating functions for the number of partial GDAP
that never go below the line y = m, with respect to the ordinate of the last
point. In Section 6, we count partial GDAP lying between the lines y = 0
and y = t, which correspond to partial DAP bounded by a given height ¢ > 0.
We present a constructive bijection between these paths of length n for t = 2
and the set of compositions of n — 2 such that no two consecutive parts have
the same parity. In Section 7, we count partial GDAP lying between the
lines y = —t and y = ¢, and we present a constructive bijection between
these paths of length n for £ = 1 and the set of compositions of n + 3 such
that the first part is odd, the last part is even, and no two consecutive parts
have the same parity. Finally, in Section 8 we provide enumerative results
for DAP with a special first return decompostion, which proves that there
are in one-to-one correspondence with Motzkin paths avoiding the patterns
UH, HU and HH. We leave as an open question the problem of finding a
constructive bijection between these two sets.

2 Definitions and notations

2.1 DAP

The length of a path is the number of its steps, and for n > 0, let A, be the
set of n-length DAP. By definition Ag = A; = @ and we set A = | J,,5 An,
see [2]. A DAP is called prime whenever it ends with Dy, k = 2, and returns
to the x-axis only once. The set of all prime DAP of length n is denoted P,,.
Notice that UD is not prime, where for short we denote Dy by D, so we set
P =Ups3Pn If a =UBUDy € Py, then 2 < k <n and j is a (possibly
empty) prefix of a path in A, and we define the DAP o” = BUD;,_,, called
the ‘lowering’ of a. For example, the path a = UUDUU D3 is prime, and
o” = UDUUD5. The map o — o’ is clearly a bijection from P,, to A,,_1 for
all n > 3, and we denote by 4 the inverse image of v € A,_1 (o is a kind of



‘elevation’ of a).

Figure 1: The Dyck path with air pockets UU DU DoUUU DU DoUU Do

Any DAP a € A can be decomposed depending on its second-to-last return
to the x-axis: either (i) « = UD, or (ii) « = BUD with B € A, or (iii) a € P,
or (iv) a = By where 3 € A and v € P. So, if A(x) = 3, -, a,2" where a,
is the cardinality of A, and P(z) = ], -3 ppx” where p, is the cardinality
of Py, then we have P(z) = xA(z) and the previous decompositions imply
the functional equation A(x) = 2? + 22 A(z) + rA(z) + rA(z)?, and

_ l—az—a2 -2t =223 —22—22+1
N 2z ’

A(z) (1)

which generates the generalized Catalan numbers (see A004148|in [8]). The
first values of a, for 2 < n < 10 are 1,1,2,4,8,17,37,82,185. In [2], the
authors study the enumeration of these paths according to many parameters,
and they give a constructive bijection between these paths and peakless
Motzkin paths (i.e. lattice paths in the first quadrant, starting at (0,0),
ending on the z-axis, made of steps U = (1,1), D = (1,—1) and H = (1,0),
and avoiding peaks of the form UD).

2.2 GDAP

The main object of study in this paper are grand Dyck paths with air pockets
(GDAP for short) which generalize DAP by allowing such paths to go below
the z-axis; and for convenience the empty path € is a GDAP. See the first
path in Figure [2] for an example. Let G, be the set of GDAP of length n > 0,
and we set G = Un>0 Gn.

We introduce notations for several subsets of G used in this study:

e G is the set of GDAP starting with U, and the empty path;

— gf is the set of elements of G ending with Dy, k > 1;

— Gy is the set of elements of G ending with U.

e G is the set of GDAP starting with Dy, k > 1;
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Figure 2: A grand Dyck path with air pockets UUDU D,UDUUUUU D4U,
and a partial GDAP ending at ordinate 1 with an up-step.

— G, is the set of elements of G~ ending with Dy, k > 1;

— G, is the set of elements of G~ ending with U.

Obviously, we have G = {e} UG UGS, G~ =G UG, ,and G = GTUG.
Also, we denote by P the set of GDAP obtained from a prime DAP in P by
mirroring it. For instance, the mirror of U3DyU Dy € P is DoUDyU? € P.

3 Enumeration of GDAP

In this section, we present a generating function that counts GDAP with
respect to the length.

Any element of G; is of the form a3, where o € G and 8 € P u {UD}.
Any element of G is either of the form (i) a3 where a € G5 and 8 € Pu{DU},
or of the form (ii) af where a € G, 8 € P u {DU}, and af is the path
obtained by merging the last step of o together with the first step of 3, i.e.
if @« = 2D; and 8 = Djy, then aff = £D;4;y. Finally, any element of G* is
either the empty path €, an element of G;, or an element of G .

Thus, we deduce the following system of equations:

Gy (z) = G*(2)(2* + P(x)) X
G5 (v) = GF (2)(@® + P(x)) + —G{ (2) (2" + P(x))
G*(x) =1+ G{ () + G5 (v),

where P, G, G5, and G* are the generating functions with respect to the
length for the cardinalities of P, G, G5, and GT, respectively. We have
P(x) = xA(z), where A is the generating function for the set A of Dyck



paths with air pockets, see . Solving the system, we get:

2

x
Gf(z) = ,
1 (@) Vot — 23 — a2 —2x + 1
G () l—z—2®)Vot—23 -2 - 2r+1—-2* + 223 + 22 + 22— 1
xr =
2 2xt — 423 — 222 — 4z + 2 ’
GH(z) = l—z+2?)Vot—223 —22 -2+ 1+ 2 - 223 — 22 — 22 + 1

x4 — A3 — 222 —4x + 2 ’

and the first terms of the respective series expansions associated with those
generating functions are:

o 22 + 23 + 22 + 525 + 112° + 2627 + 6328 + 15327 + 376210 + O(211),

o 3 + 2% + 52° + 1325 + 3227 + 802® + 2012° + 505210 + O(a1?),

o 14+ 224223 + 424 +102° 4 2420 + 5827 + 14328 + 3542° + 88120+ O (z'1).
They correspond to the OEIS sequences A051286) | A110320, and |A110236.

On the other hand, any element of G~ is of the form «f, where a €

P U {DU} and 8 € G. Any element of G is either an element of G* or an
element of G
Thus, we deduce the following system of equations:

{ G~ (z) = (2% + P(x))G(x)
G(z) = G*(z) + (2 + P(x))G(x),

where G~ and G are the generating functions with respect to the length for

the cardinalities of G~ and G, respectively. Solving the system, we get:

(1l—2+22-R)(2* - 223 -2 20+ 1+ (1 —z+2})R)
20+z—22+R)R

G (z) =

with R = v/z% — 223 — 22 — 22 + 1, and we have the following result.

Theorem 1. The o.g.f. that counts the set G with respect to the length is
given by
ot —223 2?2 20+ 1+ (1 -2+ 2R

Gla) = (1+2z—22+R)R

with R defined as above.

Notice that there is a bijection y between the sets G and G, de-
fined as follows: for a € G, x(«) is simply the mirror of «, for instance
x(UUUDs3) = DsUUU.
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So, we easily have

The first terms of the series expansions of G—, G, G| and G5 are
respectively

o 22 + 23 + 32 + 725 + 162° + 3927 + 9528 + 2332% + 577210 + O(2!1),

o 142224323+ T2 +172° +4025 49727423828 + 58729 + 1458210+ O (z11),

o 2t 4+ 22° + 525 + 1327 + 322% + 802° + 201210 + O(z1?),

o 22 + 3 + 2% + 525 + 112° + 2627 + 6328 + 1532% + 376210 + O(2!1).
They correspond to the OEIS sequences A203611), /A051291), [A110320, and
A0H1286.

4 Partial GDAP ending at a given ordinate

Let pre(G) be the set of partial GDAP, i.e. the set of all prefixes of elements of
g, see the second path in Figure 2] for an example. In this part, we enumerate
partial GDAP ending at a given ordinate with an up-step (resp. with a
down-step) with respect to the length. Let fi (resp. gx) be the generating
function for the number (with respect to the length) of partial GDAP ending
at ordinate k € Z with an up-step (resp. with a down-step). For short, we
will write fr and gy instead of fi(z) and gi(z).
According to the results in Section 2, for kK = 0 we obviously have:

l—x+224+V2r =223 —22—-2zx+1
=GJ (v) + G5 (v) = -1,
fo =G5 (@) + Gy (@) Wit —225 —22 -2z +1

and

(1+x—x2—\/x4—2x3—x2—2x+1)x
Wt =23 — 22 —2x+1 ’

g0 = G{ (z) + Gy (z) =

The first terms of the series expansions of fy and g are respectively

o 22 4+ 223 + 4x* + 1025 + 2425 + 5827 + 14328 + 3542 + 881210 + O(2!1),

o 22 4+ 23 + 3% + 7% + 162 + 3927 + 9528 + 23329 + 577210 + O(2!1).
They correspond to the sequences A110236/ and |A203611] in OEIS. Clearly,
we have G(x) = 1+ fo + go.
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For k > 0, a partial GDAP ending at ordinate k can be written a3, where
« is either empty or a GDAP ending on the z-axis with an up-step, and S is
a partial DAP ending at ordinate k. Then, we obtain

fe +agr =1+ fo) Ti(x)

with

To(x) = 2* 55+, and sy = l+x—a22—+/—22-223 —2x +2% +1
2 2z ’

where T}, is the o.g.f. that counts DAP ending at ordinate k& with respect to
length, which is already obtained in [10].
As a consequence, we deduce the following result.

Theorem 2. The o.g.f. that counts the partial GDAP ending at a positive
ordinate (with respect to the length) is given by

(1‘2—:B—1+\/:L‘4—2:B3—:E2—2:L'+1)2
don/2d — 223 — 22 — 22+ 1 ’

The first terms of the series expansion are: x4+ 22 + 423 + 9% + 222°+5525 +
13627 + 33928 + 84927 + 2132210 + O(z!1).

For k < 0, a partial GDAP ending at ordinate k can be written 3 or o3,
where a is a GDAP ending with a down-step, and  is the symmetric about
the z-axis of a partial DAP ending at ordinate —k > 0 in the right-to-left
model studied in [10]. Then, we obtain

oo ) (1494,

T
with
sy kL
Ry(z) = (s2—1)-
x

For instance, the first terms of the series expansion for k = —1, —2 are

o + 222 + 43 + 102 + 2425 + 5820 + 14327 + 3542® + 8812 + 2204210 +
O(a'),

o z+22% +523 + 132* 4 322 + 802° + 20127 + 5052° + 12732 + 3217210 +
O(z'!) which correspond to the sequences A110236/ and A110320 in OEIS.

Notice that partial GDAP of length n — 1 and ending at ordinate k = —1
are in one-to-one correspondence with non-empty GDAP of length n and
starting with an up-step (see the set G from Section . To perceive it, one
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can add an up-step at the end of a partial GDAP ending at k = —1, apply a
symmetry about the z-axis, and consider the mirror of this path.

Moreover, 22 - G5 (z) (see Section [3)) is the generating function for partial
GDAP ending at k = —2. Such partial GDAP of length n are in one-to-one
correspondence with paths of length n + 2 in G;. To see it, from a partial
GDAP ending at kK = —2, one can add an up-step at the beginning of the
path and another one at the end.

Since there is an infinite number of partial paths of length n ending at
negative height, we cannot provide an ordinary generating function (with
respect to the length) for these paths. So, we get around this in the next
section by counting partial GDAP lying above the line y = m for a given
m < 0.

5 Minorized partial GDAP

Let us denote by pre(G),, the set of partial GDAP which never go below
the line y = m, m < 0, and let us reuse the same notations as in the
previous section for the generating functions fi and gp in this subset of
pre(G). Obviously, we have fi = 0 for all £ < m and g = 0 for all k& < m.
By convenience, we count the empty path in fy. Then, the o.g.f.’s satisfy the
following equations:

Jo=1+zf 1 +xg91,
VeE=m+1,k#0, fr=xft_1+T9x_1,
Vk=m, gr= 27" T it

As a consequence, we have f,11 = xgn,. Now, we introduce the bivariate
generating functions

fun)=fw = Y i and gluz) =gw) = Y ug
k=m+1 k=m

Making use of the recursions above, we get:

Plugging the second equation into the first one, we get:

$2U,

flu) =1+ zuf(u)+ (™ f(1) = f(u)).

1—u

8



Solving for f(u), we finally get:

—u LL'ZUml
fu) = Lo vt Q) @)

1—u—2au+zu? + 22u’

In order to compute f(1), we use the kernel method (see [3,9]) on f(u).
We can rewrite the denominator—which is a polynomial in u, of degree 2—as
x(u—r1)(u — re), where:

14+z—a22 4+t —223 — 22 — 22+ 1
r = )
2x

14+x—a22 -Vt =223 — 22 —2x+ 1
ro = )
2x

and then, relation implies
flu) - (z(u—r)(u—12)) =1 —u+ 2™ f(1).
Plugging u = ro (which has a Taylor expansion at z = 0), we obtain:
1—ry+ 2% f(1) =0,
which gives an expression for f(1):
T — 1
f(l) = T m+1
$2,r.gl+1
and then:
m+1
l—u+(re—1) (%)
flu) =

)

1—u—zu+zu? + 2%u
x

9(u) = (u™f(1) = f(u)).

1—u

Finally, we have:

Theorem 3. The o.g.f. that counts the partial GDAP above the line y = m
(with respect to the length) is given by

— —1-m 2
oyt =y -z
F)+ g(1) = 2
For instance, if m = —1, —2 the first terms of the series expansions are

o 1+ 2z +42% + 823 + 172* + 372° + 8225 4+ 18527 + 4232% + 9782° +
2283710 + O(2),

o 1+ 32+ 622 + 1323 + 292% + 652° + 1482% + 34127 + 79328 + 186027 +
4395210 + O(2).
They correspond to the sequences A004148| and A093128 in OEIS.
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6 Partial (G)DAP bounded by y =0 and y =t

6.1 Enumerative results

In this section, we count partial GDAP lying between the lines y = 0 and
y = t, which correspond to partial DAP bounded by a given height ¢ > 0.
We introduce the notation ff, g for 0 <k <t, f*(u), and ¢'(u), which are
the counterparts of f, gk, f(u), and g(u) defined in the previous section. So,
we deduce the following system of equations:

[ 1 0 1[4 |t
| 0 ' 0
r —1 x 0 tt
0 €T x | —1 96 -
0
T : :
i 0 —11 4] |0

For a given height ¢t > 0, the previous matrix (denoted A;) is square with

2(t + 1) rows. Using classical properties of the determinant (in particular
A B - :

det < c D ) = det(AD — BC) whenever D is invertible, and C' and D

commute [7]), we can easily prove that D; = det(A;) satisfies

Do+ (m2 —x—1)Dyy1 + 2Dy =0,

anchored with Dy = 1, and D; = 1 — z2. Then we deduce

PAFLES W—a22+z-1 w1 WHzr—z+1
Dy = o1 T (1) t+1 |
W \(W—-22+z+1) (W + a2 —2—1)
where
W=\/J:4—2x3—:c2—2x+1.
For instance, we have Dy = 2% — 23 — 222 + 1, and D3 = —a% + 22° + 224 —
223 — 322 + 1.
Using Cramer’s rule to solve the system, for 0 < k& < ¢, we have
N} N!
¢ k ¢ t+14k
— 'k = 3



where N} is the determinant of the matrix A;(k) obtained from A; by replacing
the (k + 1)-th column with the vector (—1,0,...,0)7.

As we have done for Dy, it is easy to prove that N }; satisfies the following
recurrence relations, for 0 < k < ¢

N =D,
N§t+1 =0
Nt =aNi} 1<k<t
t _ i1
Ny _$Nt+ki2 . 2<k<t
Ni, = 22N+ aNFL

See Table [1| for exact values of Nli when 0 <t <3and 0< k<7

E\t 0 1 2 3

0 1 —22+1 z2t—23—222+1 —af+22°+22% —223—322+1
1 0 x —23 + -t =23 + ¢

2 z? z? —zt 4+ 22

3 0 —xt + 23+ 22 z3

4 z3 28 — 225 — 2t + 23 + 22

D 0 —x® 4+ 2t + 23

6 z?

7 0

Table 1: The first values of N]i for0<t<3and0<k<<7.

Using and the above recurrence relations for N, we can deduce closed
forms for ff, g, 0 < k <t
So, we can state the following result.

Theorem 4. The o.g.f. that counts the nonempty GDAP bounded by the
lines y = 0 and y =t (with respect to the length) is

t
9 = A};tl
with
N 9121 +3 (1)t < 1 - 1 >
L W@ - —12-W3\ (22— —1+ W)t (@2—2z—1-W))"

For instance, if t = 1,2, 3,4, then we have

11



z? 9 m2(1+zf:v2) 3 mQ(x472x3—x2+:E+1)
129~ a3 g2 19T (@3 =222 —2z+1) (1 4z —a3)

9(1) = , and

4 —a8 + 327 — 325 — 22% + 23 + 22
07 a8 — 327 — 26 + 525 + 4ot — 303 — 422 + 1’
and the first terms of the series expansion of these generating functions are
respectively

o 22 + ot + 2% + 28 + 210 + O(21Y),

o 22 + 23 + 2% + 32° + 225 + 627 + 62% + 1127 + 16210 + O(!1),

o 22 + 23 + 224 + 325 + 720 + 927 + 2228 + 322° + 66210 + O(2!)),

o 22 4+ 23 + 20 + 425 4+ 728 + 1627 4 2728 + 6327 + 112210 + O(2!)).
The first two correspond to shifts of A000035 and |A062200. The last two

sequences do not appear in [§].

g

6.2 Bijection with a set of compositions

As stated above, the enumeration of the set 97[10’2] of GDAP bounded by y = 0
2 2
and y = 2 is given by g(Q] = % which have a series expansion where

the coefficients coincide (up to a shift) with the sequence A062200 in [§]. In
this part, for any n > 0, we exhibit a constructive bijection v between 97[10’2]
and the set C(n — 2) of compositions of n — 2 such that no two consecutive
parts have the same parity (see [6] for the enumeration of these objects, and
[4] for more results about the enumeration of compositions with regard to

several statistics on parts).

Let us define the map . Assumingn > 2, let a =ay1...a, € gT[LOQ] and
o = asaz...o,—1. We write o/ = B1B>. .. B, where each B; is a subpath
of o/ satisfying the following rules:

e if @/ does not contain U? and UD>, then r = 1 and By = «;

e otherwise, we split o/ into subpaths B;, 1 < i < r, by cutting it after
all up-steps that are followed by another up-step or a Do-step.

For instance, if « = UUD;UUDUDUDUDUU Dy = U/ Do, then o =
BlBngB4B5 where Bl = (j7 BQ = DQU, B3 = UDU, B4 = DQUDUDU,
Bs = U. We refer to Figure [3] for an illustration of this decompostion.

Let b1, ...,b, be the lengths of the subpaths By, ..., B, respectively. It
is clear that by + b + ... + b, = n — 2. Moreover, if the subpath B; starts
with U and ends with U, then B; is of he form U(DU)¥ for some k > 0, and

12
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1 2 3 6 1

Figure 3: The image by ¢ of a = UUDyUUDUDUDUDUUDs is ¥(a) =
1,2,3,6, 1.

B;.1 is necessarily of the form Do(UD)‘U for some £, which implies that b;
is odd and b;41 is even; if the subpath B; starts with Dy and ends with U,
then B; is of the form Do(UD)*U for some k > 0, and B;11 is necessarily
of the form U(DU)¢ for some ¢, which implies that b; is even and b, is
odd. Thus, two consecutive b; and b; 1 always have different parities. Then,

the above procedure defines a map 1 from 97[10’2] to the set C(n — 2), and for
o€ QT[L0’2]7 we set () = by, ba, ..., by

Theorem 5. The map 1 from glo2 4, C(n —2) is a bijection.

Proof. Since QT[LO’Q] and C(n — 2) have the same cardinality (see the o.g.f. g2
and the sequence A062200)| at the end of subsection [6.1], it suffices to prove
that 1 is surjective.

Let ¢ = ¢1,...,¢ be a composition in C(n — 2), with » > 2 (the case
7 = 1 being trivial since if ¢; is even, then we have ¢ = (U (DU)“/?D), and
if ¢1 is odd we have ¢ = (U (UD)~D/2UDy)).

For r > 2, we distinguish four cases: (i) ¢; and ¢, are even, (i7) ¢ is even
and ¢, is odd, (i7i) ¢; and ¢, are odd, (iv) ¢1 is odd and ¢, is even. According

to each case, we define a € 6% such that Y(a) = ¢ as follows:

Case (4):

a = U (DU)*/2 (UD)e2=D2U D,U(DU)(==2/2 ||| D,U(DU)=2/2 D,
Case (ii):

o = U (DU)*/2 (UD)\=DRYU D, U(DU)(=2/2 (UD)er=DRU D,;
Case (417):

o = U (UD)@=D2y D,U(DU)(-2/2 (UD)=D2Y ... (UD)=Y2U Dy,
Case (iv):

a = U (UD)@=Y2U D,U(DU)(2=2/2 (UD)=DRy ... D,U(DU)(=2/2 D,

13
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For each case, it is clear that a belongs to 97[10’2], which implies that 1 is
surjective, and then bijective. ]

7 GDAP bounded by y = —t and y =1t

7.1 Enumerative results

In this section, we count GDAP lying between the lines y = — and y = t.
We introduce the notation f}, g for —t < k < t, f’(u), and g¢'(u), which
are the counterparts of fx, g, f(u), and g(u). So, we deduce the following
system of equations:

[ fLe] [ 0]
[ 1 0 1. :
z -1 z 0 I 0
t -1
. 0
. ft 0
z -1 x 0 ,1 )
0O =z ... =z |—-1 ) : =1 -
H 0
gt_t 0
T } )
gt ] L O]

For a given height ¢ > 0, the previous matrix (denoted A;) is square with
2(2t + 1) rows. We notice that for all ¢ > 0, the matrix A, is identical to the
matrix Ag; defined in the previous section. Hence, we have D := det(A;) =
det(Agt) = Dgt, i.e.

D/_4t:c2t+1< W—a2?4+z—1 W4+a?—z+1 >
! W \(W—a2+z+1)"" (W+a2—2—1)"1)"

where

W =+/24 — 223 — 22 — 27 + 1.

Using Cramer’s rule to solve the system, for —t < k < ¢, we have

ﬁt Nt
t k t 2t+1+k
= 7 = = 4
Tk D! Ik Dl (4)

14



where N } is the determinant of the matrix A, (k) obtained from A} by replacing
the (k +t + 1)-th column with the vector (0,...,0,—1,0,...,0)T, where the
—1is in the (¢ + 1)-th position.

Now, we focus on the calculation of ff and g} for k = 0. The other
cases can be obtained similarly, but they are much more technical and less
interesting to present them here. With the same arguments as in the previous
section (in particular, using the mentioned property of the determinant on
blocks), it is easy to prove that Né satisfies:

Ny
Nog = Dy_1 - Dy.
Moreover, we have
Nt t
Napp1 = Dio1 - Ny

Using the results obtained in the previous section, these two relations
allow to obtain a closed form for N} and N, 4+1- Using , we deduce closed
forms for f§ and g} and we can state the following result.

Theorem 6. The o.g.f. that counts the nonempty GDAP bounded by the
lines y = —t and y =t (with respect to the length) is

Dy
ot =", (Dot Nin)

where Dy and N} are defined in the previous section.
For instance, if t = 1,2, 3, then we have

(z—1)(z+1)2

2 2
fo+90 =
0 0 27 =220 —325+ 224+ 623+ 322 —x—1 ’

1,1
fo+90=-
x

—x3—222+1 ’

(14—$3—212+1)2

3, 3
Jo+ g0 = 212521 44210 11029 428 — 1927 — 426+ 1725 + 112 —5a3 —622+1
and the first terms of the series expansion of these generating functions are
respectively
o 14222 + 23 + 32% + 425 + 520 + 1027 + 1128 + 2129 + 27210 + O(2!)),
o 1+222 4323 + 524 +132° 42220 4+ 4827 + 9328 +1902° +- 375210+ O (211),
o 1+22% 4323+ 72 + 1525 + 3620 + 7527 +1762° + 3862 + 869210+ O (z11).
The first one corresponds to a shift of A122514. The last two sequences do
not appear in [§].
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7.2 Bijection with a set of compositions

As stated above, the enumeration of the set g,[fl’” of GDAP bounded by
y =—1and y = 1is given by fi + g} = m which have a series
expansion where the coefficients coincide (up to a shift) with the sequence
A122514] In this part, for any n > 0, we exhibit a constructive bijection ¢
between G5 Y and the set C'(n + 3) of compositions of n + 3 such that the
first part is odd, the last part is even, and no two consecutive parts have the
same parity.

Now, let us define the map ¢. Assuming n > 2, let @« = a1...qy, €
QT[L_I’I]. We write « = B1Bs ... B, where each B; is a subpath of o obtained
by applying the same decomposition made on o’ in subsection 6.2. Let
b1,bo,...,b. be the lengths of subpaths Bi, ..., B, respectively. In the case
r =2, let L be the reversed composition by, ...,b;. The composition ¢(«) of
n + 3 is obtained from L after going through the following process:

e if b._; is even, then add 1 to b,; otherwise, append 1 at the beginning
of L;

e if by is even, then add 2 to by; otherwise, append 2 at the end of L.

For instance, if « = UD;UUDU D UDUDUUD then we have By = U,
By = DU, Bs =UDU, By = DUDUDU, Bs =UD, by =1,by = 2,b3 =
3,by=6,b5 =2, L =2,6,3,2,1, and ¢(a) = 3,6,3,2,1,2.

In the case r = 1, « is either (UD)™? or (DU)™2. So, we define
d((UD)?) = n 4+ 1,2, and ¢((DU)™?) = 1,n + 2 (these are valid com-
positions since n has to be even in these cases).

In the case r = 0, « is empty, and we define ¢(e) = 1, 2.

Due to the definition, it is clear that the composition ¢(«) belongs to
C'(n + 3), for any n > 0.

12 3 6 2
%VMVWAH — 2,6,3,2,1 —> 3,6,3,2,1,2

Figure 4: The image by ¢ of a = UD;UUDUDUDUDUUD is ¢(a) =
3,6,3,2,1,2.

Theorem 7. The map ¢ from Q,[fl’l] to C'(n + 3) is a bijection.
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Proof. Since gt and ¢ (n + 3) have the same cardinality (see the end of
subsection , it suffices to prove that ¢ is surjective.

Let ¢ = ¢1,...,¢ be an element of C'(n + 3), with r > 2 (the case r =1
does not occur since ¢; is odd and ¢, is even implies r > 2). Thus, r is
necessarily even. We distinguish four cases: (i) ¢; = 1 and ¢, = 2, (i) ¢; =1
and ¢, is even and greater than 2, (iii) ¢; is odd and greater than 1 and
¢r = 2, (iv) ¢1 is odd and greater than 1 and ¢, is even and greater than 2.

According to each case, we define o € g,[fl’” such that ¢(a) = ¢
Case (i): Since ¢,—1 is odd, ¢, is even, and so on, and finally cg is even.

a = (UD)e—1=D2y D,U(DU)(-2-2/2 . (UD)€=DRU D,U(DU)==2/2
Case (ii):

a = (DU)=2/2 (UD)e-1-D2y . (UD)©-D2y D,U(DU)(=2/2

Case (4i):

a = [(UD)E=1=D2y D,U(DU)-2=2/2 | D,U(DU)(~2/2 (UD)@=b/2.
Case (iv):

o= (DU)(CT—Z)/2 (UD)(crq—l)/?U DQU(DU)(02—2)/2 (UD)(cl_l)/2,

For each case, it is clear that a belongs to QT[L_M], which implies that ¢
is surjective, and then bijective. O

8 DAP with a special first return decomposition

Recently in [I], the authors introduced and enumerated the subset D™= of
restricted Dyck paths defined as follows: the set D" is the union of the
empty Dyck path with all Dyck paths P having a first return decomposition
P = UaDg satisfying the conditions:

a, e D=,
{ hUaD) > h(g), (5)

where h(«) is the maximal ordinate reached by the path cr. The authors prove
algebraically and bijectively that n-length paths in D" are in one-to-one
correspondence with Motzkin paths of length n. Based on this decomposition
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and in the same way as for Dyck paths, we define a subset of AU {e} € G
as follows. The set H is the union of the empty path with all DAP v e A
having a first return decomposition satisfying the following condition:

(C) v = af with a € P U {UD}, and o’ € H whenever a # UD, [ €
H and h(a) = h(pB).

For n = 0, we denote by H, the set of DAP of length n in H. For
instance, we have Hg = {e}, H1 = O, Ho = {UD}, Hs = {UUDs}, Hy =
{UUUDs,UDUD}, Hs = {UUUUD4,UUDU Dy, UU DU D}.

In this section, we enumerate the set H,. For k = 0, let Ax(x) =
Dm0 Gn k™ (resp. By(x) = >, oo by ra") be the generating function where
the coefficient a,, ;; (resp. by ) is the number of DAP in #,, having a maximal

k
height equal to k (resp. of at most k). So, we have By(x) = >, A;(x) and
=0

the generating function for the set H, namely B(x), is given: by B(x) =
lim Bg(x).
k—o0
Due to the definition of H, we have
Ap(z) = By(x) =1,
Ay(z) = 2% Ag(x) By (2),
Ak(x) = aZAk_l(:U)Bk((E)

Lemma 1. For k > 1, we have

(1 — a3 + 2)Bg(x) — 1
22Bi(z) + @ '

Bp_1(z) =

Proof. We proceed by induction on k. Since By(z) = 1 and By(z) = % it

s 3 o (1—x3+x)B1(x)—1
is easy to check that By(x) = R
23 () —
% for 1 <i <k — 2, we prove
the result for ¢ = kK — 1. From the above equations, and the recurrence

hypothesis on By_s(x), we obtain

Now, assume that B;_1(z) =

Bi(z) = Ag(z) + Br_1(x)
= xAk_l(x)Bk(x) + Bk_l(x)
= 2(By—1 — Bp—2)Bi(x) + Bi—1(x)

—273 X —1(x)—
= 2(By_1 - & Igf@)ﬁm) Y)Bi(x) + By_1(x).

Isolating Bj_1(x), we obtain By_1(x) = %, which completes

the induction. O
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Taking the limit in the relation of Lemma 1 whenever k tends to co, we
obtain
(1+z—2%)B(x) -1
2?B(z) +x ’

B(z) =
which induces the following result.

Theorem 8. The o.g.f. that counts the set H with respect to the length is
given by

1—23 —Vab — 223 — 422 +1
B 222 ’

The above generating function B(z) counts also Motzkin paths of length
n avoiding the patterns UH, HU and H H, see sequence A329699. The first
terms of its series expansion are: 1 + z2 + 22 + 22% 4+ 32° 4+ 625 + 1027 +
202% + 362% + 72210 + 1362'! + 273212,

We finish this part with a natural question.
Open question: The sets H and that of {UH, HU, H H }-avoiding Motzkin
paths are thus in bijection and it would be interesting to exhibit a constructive
bijection between them.

B(x)
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