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Abstract

Protein functionality is based on signal transmissions across the intramolecular
interaction networks. This mechanism strictly mirrors the signal transmission effi-
ciency of technological networks, based on shortest paths between network nodes.
In this framework, the analysis of protein structures in terms on signaling networks
embedded in structures may help to outline key functional features. One of the key
descriptors for efficiency of signal transmission in network is the network eccentric-
ity, defining the scale of signal transmission, often declined in a specific definition in
terms of network volume. In this work, we present an extensive analysis of protein
contact networks in terms of their eccentricity: we made a comparative survey of
eccentricity metrics with other structural (volume) and topological (degree, shortest
path lengths, betweenness) feature of protein structures. Results point to a strong
correlation of eccentricity on signaling network properties (average betweenness
and average shortest path length), tracing out a strong similarity between protein
contact networks and high-performance technological networks.
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1 Introduction

Proteins work as smart, complex systems and their ability to reply to environmental
cues is strictly related to their plasticity [1]. Protein functionality relies on com-
plex and systemic regulatory processes. As a consequence of their systemic nature,
events are felt far from where they occur (the so called allosteric effect, see for in-
stance [2] and references therein). This feature relies on short and efficient signaling
pathways, which intervene as well in protein folding. As a result of the folding, pro-
tein structure and, in particular, their volume are regarded as key factors to explain
protein functionality, although it is not straightforward to define protein volume
metrics, which may also include information on the inner structure and compact-
ness [3].

Molecular volume determination usually passes by computing the proteins con-
vex hull (i.e., the smallest convex set containing the protein) [4, 5], or the sum of
the volumes of the single atoms, for instance, via a Voronoi Tessellation [6, 7].
An alternative approach is based on the complex networks paradigm, which pro-
vides a toolbox to unveil the inner mechanisms of protein structure and function.
Specifically, the Protein Contact Networks (PCN) proved to be an effective tool to
reveal emerging properties of protein structures; such a formalism represents pro-
teins as networks of non-covalent intramolecular interactions [8, 9, 10, 11, 12]. In
these works, we linked the properties of PCNs to the structural features of protein
structures (e.g., their shape), suggesting that the general shape of proteins does not
affect its inner structure, a confirmation of the modular, hierarchical nature of pro-
tein molecules, as noted also in [13].

The complex networks methodology allows to describe the reachability and cen-
trality of the nodes. In addition, the analysis of the shortest paths, i.e., the set of
links connecting pairs of residues with the smallest cardinality, plays a pivotal role
in the comprehension of signaling pathways and folding [14]. Several topological
descriptors stem from the notion of shortest path, each with its own peculiarities;
for instance the betweenness centrality, defined for each node as the number of
shortest paths passing by it, allows to identify functional residues in protein struc-
tures [15, 16].

Eccentricity [17, 18] is yet another fundamental shortest-path-related descriptor
of the structure of a network-the eccentricity of a node is defined as the maximal
length of the shortest paths between the given node and any other node in the graph.
In a wide spectrum of networks, ranging from technological to social networks, ec-
centricities play a crucial role: for instance in wireless sensor networks it is used
to tune network protocols (e.g., setting an adequate time-to-live of packets), to se-
lect local coordinators, or to execute distributed algorithms, which typically depend
on these parameters (see for instance [19, 20] and references therein); in social net-
works, instead, eccentricities have been used to understand how people is influenced
by their acquaintances (see [21] for a recent analysis on influence over Twitter).

In this chapter we argue that shortest paths and, in particular, eccentricities, are
effective tools to assess the volume of a network: if we assume a link connecting two
nodes constrains the nodes to be in close spatial proximity, then dense networks will
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have smaller volume than sparse ones. Based on this intuition, we develop a measure
Vecc of volume of a PCN, which amounts to a geometric mean of the eccentricities
of its nodes. To validate our metric, we consider a large database of proteins and we
compare Vecc and several other topological descriptors with the volume of the actual
proteins, calculated via Voronoi tessellation and in terms of its convex hull.

The outline of the chapter is as follows: Section 2 details the materials and meth-
ods adopted in this chapter, while Section 3 reports the results of our analysis; fi-
nally, we collect some conclusive remarks and future work directions in Section
4.

2 Materials and Methods

2.1 Dataset

We consider a dataset of M = 2102 protein structures1 listed in the Protein Domain
Server of the Structural Bioinformatics Group at the Imperial College of London,
England (see [22, 23] for details on the dataset, the complete list is available online
at http://www.sbg.bio.ic.ac.uk/˜domains/). The dataset encompasses proteins with
several domains (i.e., portions of a protein that can exist independently), from 1 to
5.

2.2 Protein Volume Calculation

To validate the proposed topological measure of volume of a PCN, we consider as
reference two different metrics for protein structure volume:

• VCH : for a given protein, we calculate the volume of the convex hull; specifi-
cally, we take the coordinates in R3 associated to each atom in the PDB file (see
http://www.rcsb.org for details on PDB files) corresponding to the protein and we
select the convex hull of such a set of positions, i.e., the smallest convex region
that contains all the points.

• VV : we calculate the volume in terms of the sum of the volume of the single
atoms, where the volume of each atom is approximated by a Voronoi tessellation
in 3D [6, 7]. We calculate the tessellation using the pdbremix toolbox (available
online at https://github.com/boscoh/pdbremix).

1 We take into account only the proteins in the dataset whose corresponding PCN is connected
(i.e., each node can be reached by each other node via a path involving some of the edges of the
graph).



4 Gabriele Oliva, Sergey Kirgizov and Luisa di Paola

2.3 Graphs

We denote by G = {V,E} a graph composed of n = |V | nodes v1, . . . ,vn and a set of
e = |E| edges (vi,v j) ∈ E ⊆V ×V ; in this view the nodes represent a set of entities,
while the edges represent the existence of a relation between pairs of entities.

2.4 Protein Contact Networks

Protein contact networks are constructed starting from the position of atoms in the
PDB file. Specifically, we extract the position of the α-carbon within each residue
in the PDB file describing the protein, and we calculate the Euclidean distance be-
tween pair of residues as the distance between the corresponding α-carbons. We
interpret the residues as the nodes in a graph, and we establish a link between two
residues if their distance is in the range [4,8]Å. In this way, only non covalent signif-
icant intramolecular contacts are included, which are likely responsible for protein
response to environment stimuli.

2.5 Topological Descriptors Considered

In this chapter we consider the following topological descriptors for PCNs:

• number of nodes n: the number of nodes in the PCN;
• average degree k: the degree of a node vi represents the number of links node vi

participates to; the average degree is the average over the whole set of nodes;
• average shortest path length sp: the shortest path length spi j is the minimum

number of links connecting two nodes; the average shortest path length is aver-
aged over the whole set of node pairs;

• average betweenness centrality btw: the betweenness centrality btwi of the i-th
node is the number of shortest paths passing by it, the average value is averaged
over the whole set of nodes;

• average eccentricity ecc: the eccentricity of a i-th node ecci is defined as the
maximal length of the shortest paths between the given node and any other node
in the graph; ecc is averaged over the whole set of node pairs.

2.6 Volume of a PCN based on Eccentricities

Further to the above topological descriptors, we introduce a novel measure of the
volume of a PCN, based on its topological structure and, specifically, on the ec-
centricities of the n nodes that compose it. We refer to such an indicator as the
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eccentricity network volume Vecc, which we define as the geometric average of the
eccentricities of the nodes, i.e.,

Vecc = n

√
n

∏
i=1

ecci.

The above indicator has several points of contact with the average eccentricity
ecc. In fact, Vecc can be regarded as a geometric mean of the eccentricities. The
average value is always greater or equal than the geometric mean, so ecc is always
greater or equal than the Vecc, with the equality verified iff all eccentricities are equal.

When we densify our network (for example, by adding several new links) the vol-
ume of the corresponding protein should decrease. And, we may expect the similar
behavior of the above PCN descriptors. This properly hold for the average eccentric-
ity ecc, for eccentricity network volume Vecc (see also Figure 1), and for the average
shortest path length sp, but not for the average degree k̄. The situation with the av-
erage betweenness btw is slightly more complicated: it may increase when we add
links to our network, but usually it decreases. An empirical study on the relations
between average betweenness and network density is conducted in [24].
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Fig. 1: Eccentricity network volume Vecc increases when the network density grows.
Networks of 10 nodes with different number of links (from left to right: 10, 20, and
40).

2.7 Statistical Analysis

To analyze the mutual dependence of the above metrics and indicators, we applied
the following statistical tools: simple correlation, partial correlation and Principal
Component Analysis (PCA). Simple correlation analysis corresponds to the com-
putation of the Pearson correlation coefficient between pairs of variables. Partial
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correlation, in turn, amounts to the degree of mutual correlation between two vari-
ables, removing the effect of one another variable.

Principal Component Analysis (PCA) is a statistical method that, given a set X of
observations x ∈Rm returns a set of principal components, i.e, mutually orthogonal
vectors

PC = {PC1,PC2, . . . ,PCk}

each in Rm and with k≤ n. The vectors are ranked in order of explained variance of
the original data set, so the smaller is the index of a principal component, the more
descriptive it is of the variability of the dataset. In particular, we are interested in the
cumulative variance CSVAR explained by the first j principal components, for each
j = 1, . . . ,k and in the loadings associated to each principal component– a loading is
the correlation between the original variable and the principal component; in other
words, loadings measure the influence of the original variables in a given principal
component.

3 Results and Discussion

Table 1 reports the Pearson correlation coefficients for each pair of variables, while
Figure 2 shows the correlations between Vch (horizontal axis) and all other descrip-
tors.

Table 1: Correlations: significative correlations - higher in module than 0.5 - appears
in bold .

Correlations n domains k VCH VV ecc Vecc sp btw
n 1.0000 0.2779 0.4680 0.9777 0.9828 0.8366 0.8388 0.8555 0.9579
domains - 1.0000 0.2898 0.2686 0.2626 0.3401 0.3397 0.3401 0.2328
k - - 1.0000 0.3868 0.4562 0.3212 0.3232 0.3501 0.3511
VCH - - - 1.0000 0.9656 0.8817 0.8832 0.8928 0.9822
VV - - - - 1.0000 0.8127 0.8148 0.8316 0.9399
ecc - - - - - 1.0000 1.0000 0.9913 0.8534
Vecc - - - - - - 1.0000 0.9917 0.8546
sp - - - - - - - 1.0000 0.8641
btw - - - - - - - - 1.0000

Most descriptors strongly correlate with the number of nodes n (i.e., all but the
average degree and the number of domains); noticeably, the number of domains does
not correlate with any other descriptor, confirming the high modularity of protein
structures, whose connectivity features are mostly independent on size or domains
number [25]. The average degree k, as well, shows no significant correlation with
any other variable, suggesting that the average connectivity is more or less constant
for proteins of different sizes, number of domains and function.
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Fig. 2: Correlations between Vch (horizontal axis) and all other descriptors.

Both volume metrics (VCH and VV ) strongly correlate with all descriptors but the
number of domains and the average degree, and so do eccentricity-related descrip-
tors (ecc and Vecc), the average shortest path sp and the average betweenness btw.

Table 2: Principal Components: significative loadings - higher in module than 0.5 -
are reported in bold.

Principal
Components n domains k VCH VV ecc Vecc sp btw CSVAR

P1 0.9628 0.3668 0.4615 0.9756 0.9466 0.9449 0.9461 0.9542 0.9526 74.7609
P2 -0.0464 0.7679 0.6020 -0.1151 -0.0561 -0.0705 -0.0747 -0.0619 -0.1560 85.9826
P3 0.1505 -0.4921 0.6171 0.0579 0.1656 -0.1963 -0.1935 -0.1617 0.0633 94.6775

To further inspect the dependency of the other descriptors on the number of
nodes, we report in Table 2 the results of the PCA analysis, which aims to assess
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the role of each variable in explaining the variance of the data set. In the table, we
report the loadings and the cumulative variance CSVAR. We show, sorted from top
to bottom, only the components accounting, individually, for at least 5% of the over-
all variance, which in our case coincide with the first three principal components.
From the results in Table 2 we notice that the loadings of the first principal com-
ponent PC1 are above 0.9 for all variables but the degree and number of domains,
and the component explains about 75% of the total variance; the second component,
instead, individually explains around 11% of the total variance and is correlated to
the number of domains and the degree; the third component, instead, has a rele-
vant correlation only with the degree and explains an additional contribution worth
about 8% of the variance. We notice that eccentricity-related metrics, alone, are not
relevant in the cumulative explained variance, as further principal components (not
reported in the table) explain a little fraction of the total variance.

As a result of the above PCA analysis, we obtain stronger evidence of the strong
dependence of all descriptors on n, which is likely to influence the remaining corre-
lations. Since most of the above descriptors may scale considerably with the number
of nodes, and the number of nodes has strong correlations with almost all descrip-
tors, we are tempted to believe that the remarkable correlations in place in Table 1
are strongly dependent on the number of nodes.

To highlight the specific contribution of the descriptors, we calculate the partial
correlation between variables, excluding the effect of the number of nodes (Table
3). By removing the effect of n, we observe strong correlations between VCH and
Vecc and btw.

Table 3: Partial correlation w.r.t. number of nodes: significative correlations - higher
in module than 0.5 - appears in bold.

Correlation domains k VCH VV ecc Vecc sp btw
domains 1.0000 0.1882 -0.0153 -0.0594 0.2044 0.2038 0.2058 -0.1211
k - 1.0000 -0.3818 -0.0234 -0.1454 -0.1443 -0.1099 -0.3834
VCH - - 1.0000 0.1195 0.5545 0.5520 0.5189 0.7569
VV - - - 1.0000 -0.0948 -0.0955 -0.0964 -0.0299
ecc - - - - 1.0000 0.9999 0.9714 0.3308
Vecc - - - - - 1.0000 0.9723 0.3271
sp - - - - - - 1.0000 0.3001
btw - - - - - - - 1.0000

We notice that, getting rid of the effect of the number of nodes via partial corre-
lation, most of the previously significant correlation coefficients become negligible.
In the previous table, VCH looses its correlation with VV , while keeping correlation
with ecc, Vecc and with btw; this latter is the most significant, albeit strongly reduced
with respect to the total correlation (from 0.98 to 0.76). Moreover, VV loosed all cor-
relations; this is not surprising, since VV simply accounts for the sum of the volumes
of the atoms, so removing the dependence on n unties all other correlations. In other
words, VV strictly describes protein encumbrance, in turn depending on protein size.
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On the other hand, VCH describes the envelope of the protein molecule, which de-
pends less markedly on the number of atoms. Such a metric describes better protein
compactness, so it is able to catch to some extent the functional aspects of the protein
volume. Such functional aspects are also accounted by the betweenness centrality,
irrespectively of the protein size.

As for ecc, Vecc and sp, they remain strongly correlated with each other and with
the average degree, while they loose correlation with the betweenness. Moreover,
their correlation with VCH is above 0.5, suggesting a strong relationship with the
convex hull of the protein, regardless of the network size.

It is interesting to note that, while the betweenness strongly correlates with VCH ,
it shows a poor correlation with eccentricity-related indicators; this suggests that,
although both metrics are are good volume descriptors, and, in particular, they are
particularly well descriptive of the bulk/envelop of the folded proteins, they are
somehow complementary.

4 Conclusions

Protein structure depends on size, and so do most topological descriptors linked
to shortest paths (from eccentricities to centralities). When the effect of nodes is re-
moved, most correlations fall down, and only size-independent links remain, such as
that between the convex hull volume and the betweenness centralities. This suggests
the existence of a link between volume metrics - accounting for protein compact-
ness - and betweenness, which is also primarily independent on degree (so more
compact proteins are not said to be endowed with a high connectivity). This work
highlights again the modular architecture of protein structures, which is also related
to the signal transmission throughout the protein molecule.

Finally, the definition of a new metrics of network volume Vecc has a potential
impact both in the field of PCNs analysis and protein structure prediction, since we
demonstrated this descriptor well complies with structural features related to protein
functionality (such as protein compactness).
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1. N. Plattner, F. Noé, Nature communications 6 (2015)
2. Z. Bu, D. Callaway, Adv Protein Chem Struct Biol 83, 163 (2011)
3. M.B. Enright, D.M. Leitner, Physical Review E 71(1) (2005)
4. X.S. Zhang, Z.W. Zhan, Y. Wang, L.Y. Wu, Operations Research and Its Applications, Lecture

Notes in Operations Research 5, 276 (2005)
5. Y. Wang, L.Y. Wu, X.S. Zhang, L. Chen, in Theory and Applications of Models of Computation

(Springer, 2006), pp. 505–514
6. M. Gerstein, J. Tsai, M. Levitt, Journal of molecular biology 249(5), 955 (1995)
7. Y. Harpaz, M. Gerstein, C. Chothia, Structure 2(7), 641 (1994)
8. L. Di Paola, M. De Ruvo, P. Paci, D. Santoni, A. Giuliani, Chem Rev 113(3), 1598 (2013)



10 Gabriele Oliva, Sergey Kirgizov and Luisa di Paola

9. L. Di Paola, A. Giuliani, Adv Sys Biol 3(1), 7 (2014)
10. L. Di Paola, A. Giuliani, Curr Opin Struct Biol 31, 43 (2015). DOI 10.1016/j.sbi.2015.03.001
11. A. Giuliani, L. Di Paola, Curr Protein Pept Sci 17(1), 3 (2016)
12. R.K. Grewal, S. Roy, Protein Pept Lett 22(10), 923 (2015)
13. N. Arrigo, The Open Bioinformatics Journal 6(1), 20 (2012)
14. A.R. Atilgan, P. Akan, C. Baysal, Biophys J 86(1 Pt 1), 85 (2004). DOI 10.1016/S0006-

3495(04)74086-2
15. A. del Sol, H. Fujihashi, D. Amoros, R. Nussinov, Mol Syst Biol 2, 2006.0019 (2006). DOI

10.1038/msb4100063
16. G. Bagler, S. Sinha, Bioinformatics 23(14), 1760 (2007)
17. F. Harary. Graph theory. 1969
18. P. Hage, F. Harary, Social networks 17(1), 57 (1995)
19. N. Mitton, A. Busson, E. Fleury, in Mediterranean ad hoc Networking Workshop (MedHoc-

Net’04). (2004), p. 0000
20. D. Peleg, L. Roditty, E. Tal, Automata, Languages, and Programming pp. 660–672 (2012)
21. M. Reed, Journal of Choice Modelling 17, 28 (2015)
22. M. Sternberg, H. Hegyi, S.A. Islam, J. Luo, R.B. Russell, in Proceedings/... International

Conference on Intelligent Systems for Molecular Biology; ISMB. International Conference on
Intelligent Systems for Molecular Biology, vol. 3 (1994), vol. 3, pp. 376–383

23. S.A. Islam, J. Luo, M.J. Sternberg, Protein Engineering 8(6), 513 (1995)
24. L. Gulyas, G. Horváth, T. Cséri, Z. Szakolczy, G. Kampis, in 19th International Symposium

on Mathematical Theory of Networks and Systems (MTNS 2010) (2010)
25. S. Tasdighian, L. Di Paola, M. De Ruvo, P. Paci, D. Santoni, P. Palumbo, G. Mei, A. Di Venere,

A. Giuliani, J Chem Inf Model 54(1), 159 (2014)


