
Peaks and valleys in the size distribution
of shortest path subgraphs

Sergey Kirgizov and Clémence Magnien

firstname.lastname@lip6.fr
UPMC, LIP6, UMR 7606, 75252 Paris, France

CNRS, UMR 7606, 75252 Paris, France

June 27, 2014

Abstract

Considering a random graph G(n, p) we denote by SPS(u, v) the sub-
graph of all shortest paths between two vertices u and v. We show that
the size of SPS(u, v) follows a nontrivial probability law with several local
maximum values. In the random graphs with constant density p the num-
ber of vertices in SPS is equal to 2 (with the probability p) or concentrated
around np2 (with the probability 1 − p) as n goes to infinity. In sparse
random graphs with unbounded mean degree (p → 0, n → ∞, np → ∞)
we have similar two-peak distribution. Also we approximate the expected
number of vertices in SPS(u, v), when the distance between u and v is
known (we give the exact distribution, when the distance is equal to 2).

1 Background and introduction
Random graphs attract great attention of researchers from various fields, such
graphs are the basis for many models of real-world networks. Our work is
motivated by the analysis of the Internet topology measurements for which
a model has been proposed [Magnien et al. 2013; Medem et al. 2012]. The
basic operation for measuring the topology of the Internet consists in observing
a single path between two vertices, with tools such as traceroute [Latapy
et al. 2011]. In order to understand the hidden network structure between two
computers in general network, we develop a theoretical approach using classical
random graphs.

We consider a random graph G(n, p), where n is the number of vertices and
each edge is included in the graph with probability p independent from every
other edge. This notion of a random graph goes back to the works [Rapoport
1948; Solomonoff and Rapoport 1951; Erdős and Rényi 1959], and [Gilbert 1959].
Massive numerical simulations was performed in order to estimate the average
proportion of edges that lie on all shortest paths from a given vertex to all other
vertices [Guillaume and Latapy 2005], which represents the fraction of links
that it is possible to observe in the Internet using classical measurement tools.
Guillaume and Latapy showed that the average proportion oscillates when p
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grows. These oscillations was analysed in [Blondel et al. 2007]. The average
number of edges (not the proportion) also oscillates when p grows (see Fig. 1).

In this paper we study the number of vertices (or edges) which lie on all
shortest paths between two vertices. In this case also, we observe that the av-
erages fluctuates when p varies. The average number of edges (Fig. 2(a)) os-
cillates in similar way to the average number of vertices (Fig. 2(b)). A sharp
increase of average around p = 2∗10−3 corresponds to well-known phenomenon
in Erdős–Rényi graphs: phase transition — birth of giant component (see [Bol-
lobás 2001] for detailed explanation).

Surprisingly, we observe that the distribution is non-trivial, with several
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Figure 1: Evolution with p (log scale) of the number of edges (log scale) that lie
on all shortest paths from a vertex to all other vertices in G(n, p) with n = 500
vertices. Each grey point corresponds to an observed value. Red points represent
the average over 200 graphs. A fast growth around p = 2 ∗ 10−3 corresponds to
a phase transition.
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Figure 2: Evolution with p (log scale) of the number of edges and vertices
(log scale) that lie on a shortest path between two vertices from G(n, p) with
n = 500 vertices. Each grey point corresponds to an observed value. Red points
represent the average over 200 graphs. A fast growth around p = 2 ∗ 10−3
corresponds to a phase transition.
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local maxima and that the average is a combination of these maxima and not a
value that can be reached in all cases.

The rest of the paper is organised as follows. In Section 2 we give the nec-
essary definitions. Next, in Section 3 we study complete and quasi-complete
graphs (i.e. graphs obtained from complete graphs by removing an edge). The
results from the Section 3, being a bit trivial, primarily serve to form an intu-
ition about the number of vertices lie on all shortest paths between two chosen
vertices. In Section 4 we consider dense random graphs and in Section 5 we
study sparse random graphs with unbounded mean degree. In all cases (except
the complete graphs) we find a non-trivial multimodal distribution of the num-
ber of vertices which lie on all shortest path between two vertices. We explain
this phenomenon. Finally, we summarise our main results and discuss possible
future works in Section 6.

2 Definitions
In this paper we are interested in the number of vertices or edges that belong
to the shortest paths between two vertices. We give the necessary definitions
below.

Definition 2.1: Given a graph and its two vertices u and v, let SPS (u, v) be
the subgraph of all shortest paths between u and v, i.e. SPS (u, v) contains all
edges and vertices that belong to all shortest paths between u and v.

Definition 2.2: Given a graph and its two vertices u and v, let S(u, v) be the
number of vertices in SPS (u, v). When u and v are not connected S(u, v) is
equal to 0. Similarly, SE(u, v) will denote the number of edges in SPS (u, v).

Definition 2.3: For a given graph, by d (u, v) we denote the distance between
its two vertices u and v, i.e. the length of a shortest path from u to v. If between
u and v there is no path at all, we say d (u, v) = ∞. For brevity we write

x

ũv
instead of d (u, v) = x.

Definition 2.4: A random graph G(n, p) is a graph with n vertices such that
each edge between different vertices is included in the graph with probability p.

Fix two distinct vertices u and v from a given set V of n vertices, and
consider all realisations of G(n, p) over V as a probability space.

Definition 2.5: Let fd = Pr
[
d (u, v) = d

]
and f>d = Pr

[
d (u, v) > d

]
.

Abusing the notation we will denote by S the random variable for the number
of vertices in SPS (u, v) when there is no ambiguity. Analogously, we use SE for
the random variable of the number of edges in SPS (u, v).

3 Complete and quasi-complete graphs
Let us consider complete and quasi-complete graphs in order to form an intuition
about the distribution of S. In the case of complete graph Kn the structure of
SPS (u, v) is trivial, because SPS (u, v) contains only the vertices u, v and the
edge uv. Consider now a quasi-complete graph Kn − ab, i.e. a graph obtained
from Kn by removing an edge ab.
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Proposition 3.1: For any distinct vertices u and v from the quasi-complete
graph Kn − ab we have:

S(u, v) =

{
n if {u, v} = {a, b} ,
2 otherwise .

Proof. Suppose u = a and v = b (or conversely). Vertices a and b are not
directly connected, but they are connected by n − 2 paths of length 2 (see for
example Fig. 3). The union of these paths contains all vertices of our graph, so
S(a, b) = n. Otherwise, u and v are directly connected, and S(u, v) = 2.

The size distribution of shortest path subgraphs of the quasi-complete graph
contains a valley [3, n− 1], and two peaks: 2, n− 1.

a b

Figure 3: K6 − ab. There are 4 different shortest paths between vertices a and
b, while there is only 1 shortest path between any other two vertices.

4 Dense random graphs (p is fixed, n → ∞)
In this section we study dense random graphs, i.e. graphs with constant density
p. First, we show that such graphs have diameter 2. This allows us to con-

sider only two cases:
1

ũv and
2

ũv. We study these cases, and we show that the
size distribution of SPS (u, v) looks similar to the two-peak distribution from
Proposition 3.1.

It is well known that almost all random graphs have diameter 2 (see for
example [Moon and Moser 1966]). We present a similar result:

Theorem 4.1 (Random graphs with constant density have diameter 2): For
any given p > 0 we have f1 = p, f2 → 1− p, and f>2 → 0 as n→∞.

Proof. By the definition of G(n, p) we have f1 = p and f>1 = 1− p. Next, the
distance between two nonadjacent vertices u and v is larger than 2 if and only
if they have no common neighbours. For a vertex different from u and v this
happens with probability 1− p2, and it should be true for the n− 2 remaining
vertices distinct from u and v. So, we have:

f>2 = f>1(1− p2)n−2 .

Since p > 0 is fixed, limn→∞ f>2 = 0.
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Theorem 4.1 shows that in dense random graphs there is almost surely only

two cases:
1

ũv and
2

ũv. The structure of SPS (u, v) in the former case is trivial,
because SPS (u, v) contains only the vertices u, v and the edge uv. In the rest
of this section we study the later case. Denote by Y the number of vertices that
are directly connected to both u and v.

Lemma 4.2: Y is a binomial random variable with parameters n−2 and success
probability p2:

Y ∼ B(n− 2, p2) .

Proof. The probability that any vertex c is directly connected to both u and v
is equal to p2. We have n − 2 vertices which are independently susceptible to
lie between u and v.

Theorem 4.3: When the distance between u and v is equal to 2, the probability

function Pr

[
Y = k|

2

ũv

]
is equal to
{
0 if k = 0 ,

Pr[Y=k]
1−(1−p2)n−2 if k ≥ 1 .

Proof. From the definition of conditioned probability we have

Pr

[
Y = k|

2

ũv

]
=

Pr

[
Y = k and

2

ũv

]

Pr

[
2

ũv

] .

Let A be an event “there is no edge between u and v”. Observe that

2

ũv ⇐⇒ A and Y ≥ 1 .

A is independent from Y and Pr[A] = 1− p, so

Pr

[
Y = k|

2

ũv

]
=

(1− p) Pr [Y = k and Y ≥ 1]

(1− p)(1− (1− p2)n−2) .

Note that

Pr [Y = k and Y ≥ 1] =

{
0 if k = 0 ,

Pr[Y = k] if k ≥ 1 .

The claimed formula easily follows.

Corollary 4.4: When the distance between u and v is equal to 2, we have the
following expressions for the expectation and the variance of S:

E
[
S
∣∣ 2

ũv

]
= 2 +

(n− 2)p2

1− (1− p2)n−2 ,

Var

[
S
∣∣ 2

ũv

]
=

(n− 2) p2
(
1− p2 + (n− 2)p2

)

1− (1− p2)n−2 −
(

(n− 2)p2

1− (1− p2)n−2
)2

.
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Proof. When the distance between u and v is equals to 2, SPS (u, v) contains

2 + Y vertices. Thus, we have E
[
S|

2

ũv

]
= 2 + E

[
Y |

2

ũv

]
. From Lemma 4.2

we know that Y is a binomial random variable with parameters n − 2 and
success probability p2. From Theorem 4.3 we know the probability function

Pr

[
Y = k|

2

ũv

]
. Next, we write

E
[
Y |

2

ũv

]
=

∞∑

k=0

kPr

[
Y = k|

2

ũv

]

=

∞∑

k=1

kPr[Y = k]

1− (1− p2)n−2

=
E[Y ]

1− (1− p2)n−2 .

Now, the claimed formula for the expectation can be easily obtained.
Let’s see what happens with the variance

Var

[
S|

2

ũv

]
= Var

[
Y |

2

ũv

]

= E
[
Y 2|

2

ũv

]
−
(
E
[
Y 2|

2

ũv

])2

Note, that

E
[
Y 2|

2

ũv

]
=

∞∑

k=1

k2 Pr[Y = k]

1− (1− p2)n−2

=
E[Y 2]

1− (1− p2)n−2

=
(n− 2) p2

(
1− p2 + (n− 2)p2

)

1− (1− p2)n−2 .

And finally

Var

[
Y |

2

ũv

]
=

(n− 2) p2
(
1− p2 + (n− 2)p2

)

1− (1− p2)n−2 −
(

(n− 2)p2

1− (1− p2)n−2
)2

In order to illustrate Corollary 4.4 we performed some numerical simulations.
Figure 4(a) shows the values of S in the case when n is fixed and p ∈ [0, 1].
Figure 4(b) shows what happens when p is fixed but n grows. Different colours
correspond to different distances between u and v. The black line represents

E[S|
2

ũv] and the red lines delimit the 89%-confidence interval. We see indeed
that these simulations are in agreement with formulæ from Corollary 4.4.
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Figure 4: Empirically measured values of S for different random graphs. Each
point corresponds to an observed value of S. Different colours correspond to

different distances between u and v (red:
1

ũv, green:
2

ũv, blue:
3

ũv, cyan:
4

ũv,

magenta:
5

ũv). The black line represents E[S|
2

ũv] and the red lines delimit the
89%-confidence interval. A log scale is used for both axes.

Corollary 4.5: When the distance between u and v is equal to 2, we have:

Pr

[
SE = 2k|

2

ũv

]
= Pr

[
Y = k|

2

ũv

]
.

Proof. It is sufficient to realise that for each vertex c ∈ SPS (u, v), c /∈ {u, v}
there are exactly two distinct edges in SPS (u, v), i.e. (c, u) and (c, v).

Finally, the probability mass function of S is a mixture of two functions: the

first corresponds to the case
1

ũv and the second to
2

ũv (see Fig. 5):

S =





2 if
1

ũv ,

2 + Y if
2

ũv , where Pr

[
Y = k|

2

ũv

]
=

{
0 if k = 0 ,

Pr[Y=k]
1−(1−p2)n−2 if k ≥ 1 .

.

The distribution of S has two local maxima, and the average size of SPS (u, v)
lies in the valley between these maxima. This finally explains why the real values
of S(u, v) and SE(u, v) are very different from the average.

5 Sparse random graphs with unbounded mean
degree(p → 0 and np → ∞ as n → ∞)

We say that a random graph is sparse, when its density p tends to zero, as
n goes to infinity. There are two classes of sparse graphs: (i) mean degree is
constant (np = c), (ii) mean degree is unbounded (np→∞). Here we study the
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Figure 5: Schematic representation of the probability mass function of S.

second case. As Figure 4(a) suggests, when p decreases, the number of peaks in
the distribution of S grows. For example, a third peak (dark-blue points on the
Fig. 4(a)) appears when the probability that d (u, v) = 3 becomes non-negligible.

Let us give an intuitive explanation for the fact that there are several peaks
and valleys in the size distribution of SPS (u, v). We observe that S(u, v) >
d (u, v) + 1, so, when d (u, v) grows, S(u, v) also grows. Intuitively, when our
graphs are not like trees, S(u, v) grows much faster than d (u, v):

d (u, v) > d (u′, v′)⇒ S(u, v)� S(u′, v′) .

Therefore, each observed value for d (u, v) will correspond to a peak in the
distribution of S.

In subsection 5.1 we give an approximation of the expected number of ver-
tices in SPS (u, v) in the case when we know the distance between u and v. In
subsection 5.2 we give a classification of sparse graphs with unbounded mean
degree, and we study the size distribution of SPS (u, v) according to this classi-
fication.

5.1 Approximated expectation of the size of SPS

Recall that we denote by fd (resp. f>d) the probability that the distance be-
tween two vertices is equal to d (resp. greater than d). Authors in [Blondel
et al. 2007] showed that fd can be approximated by a recurrent formula:

f>0 = 1− 1

n
,

f>d =
(
1− 1

n

)
(1− p)(1−f>d−1)n ,

fd = f>d−1 − f>d .

We refer interested reader to [Blondel et al. 2007] for details about f>d. Note
however that the authors considered the case where the two chosen vertices are
not necessarily distinct. Therefore, their definition of fd is a bit different from
our, but asymptotically they coincide.

Approximation 5.1: When the distance between u and v is equal to x, we
have the following approximation for the expectation of S.

E
[
S
∣∣ x

ũv

]
≈ x+ 1 + (n− x− 1)

x−1∑

y=1

fyfx−y .
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Idea. First of all, it should be noted that the expectation of S, conditioned
on the distance being x, is equal to

2 + (n− 2) ∗ Pr
[
c ∈ SPS (u, v)

∣∣ x

ũv

]
.

But it seems difficult to calculate exact expectation, so we present here only an
(over)approximation. When

x

ũv, we know that S > x+ 1. There are n− x− 1
possible vertices which also can lie on a shortest path between u and v, so we
have

E
[
S
∣∣ x

ũv

]
≈ x+ 1 + Pr

[
c ∈ SPS (u, v)

∣∣ x

ũv

]
(n− x− 1) . (1)

Note that a vertex c is on a shortest path between u and v if and only if
d (u, v) = d (u, c) + d (c, v). Therefore we have:

Pr

[
c ∈ SPS (u, v)|

x

ũv

]
=

∑x−1
y=1 Pr

[
y

ũc and
x−y

c̃v and
x

ũv

]

Pr

[
x

ũv

]

Assuming that events
y

ũc,
x−y

c̃v and
x

ũv are mutually independent and identi-
cally distributed (actually it is not true, because there is triangular inequality
that creates some dependencies), we approximate:

Pr

[
y

ũc and
x−y

c̃v

]
≈ Pr

[
y

ũc

]
Pr

[
x−y

c̃v

]
≈ fyfx−y ,

and finally

Pr

[
c ∈ SPS (u, v)|

x

ũv

]
≈
x−1∑

y=1

fyfx−y . (2)

Using Blondel’s relation and our formulæ (1) and (2), we are able to obtain the
claimed approximation.

Figure 6 illustrates our approximation when d (u, v) ∈ {3, 4}. Clearly we
see several peaks, i.e. typical values of S. Our approximation corresponds to
the centres of these peaks. There are valleys between peaks. But these valleys
vanish when p is very small, due to the variance of S.

Typically our approximation gives very good estimations compared to ex-
perimental data. However, when d (u, v) is very large (compared to the average
distance), the result of approximation is slightly inadequate. This happens due
to the following reasons: (i) Blondel et al. expression for fd is not exact; (ii) we
neglect the dependence between some events.

Also when our graph is very dense, f3 and f4 are almost zero (see Theo-
rem 4.1), and there are no points around the “right tails” of black curves.

5.2 Classification of sparse graphs according to the dis-
tance distribution

In appendix of [Blondel et al. 2007] the following was shown:
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Figure 6: Empirically measured values of S in random graph with 500 vertices.

Different colours correspond to different distances between u and v (red:
1

ũv,

green:
2

ũv, blue:
3

ũv, cyan:
4

ũv, magenta:
5

ũv). Approximated E
[
S|

x

ũv

]
is

represented by black lines. A log scale is used for both axes.

Theorem 5.2: For any given d > 2 and any given λ ∈ (0,∞), if nd−1pd = λ
we have:

lim
n→∞

f<d = 0 ,

lim
n→∞

fd = 1− e−λ ,

lim
n→∞

fd+1 = e−λ ,

lim
n→∞

f>d+1 = 0 .

Informally, this means that when p = d

√
λ

nd−1 and n is sufficiently large, there

are only two possibilities:
d

ũv and
d+1

ũv . It can be shown that limn→∞E
[
S|

d

ũv
]

exists and depends only on λ, while E
[
S|

d+1

ũv
]
grows with n.

For the random graphs with constant density, we have: d = 1, E[S|
1

ũv] = 2

and E
[
SE |

2

ũv

]
≈ np2 (see Proposition 4.3 and Corollary 4.4). Therefore, we

have similar size distributions of SPS (u, v) in the case of dense and sparse
random graphs.

We performed numerical simulations using two families of sparse random
graphs: (A) np2 = 1 and (B) n2p3 = 1. For each value of p we generated 200
random graphs G(n, p) and we measured S (each point in Fig. 7 corresponds to a
measured value of S, different colours correspond to different distances between

vertices). Finally, we let n go to infinity. We see that E
[
S|

d

ũv
]
stabilises around

some value, but E
[
S|

d+1

ũv
]
grows unboundedly. The valley between these two

typical values of S grows also with n (see Fig. 7).
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Figure 7: Empirically measured values of S. Different colours correspond to
different distances between u and v. Our approximation for E

[
S|

x

ũv
]
is repre-

sented by black lines (on the left: x ∈ {2, 3}, on the right: x ∈ {3, 4}). A log
scale is used for both axes.

6 Summary and discussions
In this paper we study the size of shortest path subgraph between two vertices.
We denote by S the number of vertices in that subgraph. When we consider
a family of random graphs G(n, p), S becomes a random variable. This paper
results in a characterisation of S, see Theorem 4.3, Corollary 4.4 and Approxi-
mation 5.1.

The probability mass function of S has several local maxima (peaks). Each
peak corresponds to a possible distance between u and v. Between such peaks
we have valleys of “improbable” sizes of SPS , in other words the distribution of
S is multimodal.

The structure of SPS (u, v) in the case of
1

ũv is trivial. We give the exact
distribution for the size of SPS (u, v) (in terms of edges and vertices) in the case

of
2

ũv (see Theorem 4.3, Corollary 4.4 and Corollary 4.5). For other cases (e.g.
3

ũv,
4

ũv) we have an approximated representation of expected number of vertices
in SPS (u, v) (see Approximation 5.1). Better approximations (or even exact
distributions) are parts of a future work. Another part consists in studying
real-world networks or other models of random graphs (e.g. power-law graphs).
Future works may also investigate another important class of sparse random
graph, when mean degree is constant (np → c > 1), using the methodology
described in [H. van den Esker et al. 2008].

Our study of the size of SPS (u, v) in the case of random graphs gives some
insights about SPS (u, v) in real-world networks (e.g. about the network struc-
ture between two computers in the Internet). Moreover, the notion of SPS (u, v)
can be considered as a similarity measure between vertices u and v, that may
be helpful in community detection.
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