Internet topology dynamics in ten minutes

Sergey Kirgizov under the supervision of Clémence Magnien

Complex Networks \subset LIP6 \subset (UPMC \times CNRS)

4 March 2014

Outline

- **1** What do we observe?
- **2** Why it is so important?
- 3 How do we study our observations?

What do we observe?

Internet IP-level topology

Nodes: IP addresses

Links: connections between hosts

Internet IP-level topology

Nodes: IP addresses

Links: connections between hosts

(shortest) paths between monitor and destinations

a measurement by tracetree

another measurement by tracetree load-balancing

yet another measurement by tracetree evolution of routes

Ego-centered view dynamics

Fast periodic measurements \Longrightarrow study of the dynamics

Why we should study this?

Some possible applications

- Develop a good model of the network
- Security (unstable routes means more spyware?)
- Robustness of the network and protocols
- Event detection
- Web caching
- etc

Can we see the dynamics?

Measurement is a set of IP-links first measurement *i*-th measurement $d(m_1, m_i) = |\overline{m_1 \cap m_i}|$ $d(m_1, m_i)$

6

8

10

12

14 $(delay \approx 1 min 30 sec)$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Measurement is a set of IP-links

 m_1 : first measurement

$$d(m_1, m_i) = |\overline{m_1 \cap m_i}|$$

Overview of problems and methods

Methods:

- Real-world measurements
- Simulated measurements using random graphs
- Theoretical study of dynamic random graphs
- Stochastic process estimation from partial observations

Questions?

http://kirgizov.complexnetworks.fr/