Internet Topology Dynamics: stochastic process estimation from partial observations

Sergey Kirgizov, Clémence Magnien

LIP6 (CNRS – UPMC) Paris

Internet dynamics is not 1-point poissonian process

This naïve 1-point poissonian approach does not work with internet dynamics: Due to load-balancing old states can reoccur in $\langle Y \rangle$. The internet topology is not a one solid object. Different parts of topology have different dynamics.

n-point process

Contrary to 1-point process, n-point process deals with a set U of points. At each time we observe only a random part of U.

nodes : computers links : connections between computers

Static case

Long and expensive measures \implies No reliable map Bias in the observed structure

Dynamics

All static problems \implies Not so easy Topological changes

Dynamics of egocentric views

 $(a,b,c) \longrightarrow (a,b,d,e) \longrightarrow (e,b,c) \longrightarrow (e,b,d) \longrightarrow (e,b,d)$ Real $\langle X \rangle$: $(a,b) \longrightarrow (e,c) \longrightarrow (e,b)$ Observed $\langle Y \rangle$:

Different parts have different dynamics

• – part of a topology (e.g. a node) δ – lifetime of \bullet p – probability of being observed Δ – interval between observations

Denote by o the number of observations that contains our \bullet . Using our sequence of observations, we approximate:

 $\delta = t_{\text{last}} - t_{\text{first}}, \ p = \frac{o}{n}.$

During the lifetime of • we perform $n = \frac{\delta}{\Delta}$ observations. Suppose that p is constant over the lifetime of \bullet . Now we write the probability that particular \bullet is missed.

From this we can conclude that the missed parts of topology have a short lifetime

 $\langle X \rangle \xrightarrow{\Delta} \langle Y \rangle_1 \qquad \qquad \langle X \rangle \xrightarrow{2\Delta} \langle Y \rangle_2 \qquad \qquad \langle Y \rangle_1 - \langle Y \rangle_2$

δ 750

0.0

00 ° 00000 0 0 0

0.5

D

Counts

1-point process. Poissonian case

We have one object. The object can change at some moment. The object never changes back. We suppose that number of changes that occurs during Δ follows some poissonian law (parameterized by λ , i.e. mean number of changes in Δ). How can we infer the most likely λ having only a sequence of observations?

Towards a solution of *n*-point process

Possible approach consists in constructing a transformation: *n*-point process $-\stackrel{?}{-} \rightarrow$ 1-point process But it is not easy, particularly when points have different properties, e.g. different probability of being observed.

N – number of intervals c – number of intervals with at least one change

 $1 - \text{Pois}_0(\lambda)$ - the probability of "at least one change" $1 - \operatorname{Pois}_0(\lambda) \approx \frac{c}{N}$ $\hat{\lambda} = \operatorname{Pois}_0^{-1} \left(1 - \frac{c}{N} \right)$

Conclusion

- Internet topology dynamics can be modelled as partially observed n-point stochastic process (where n is not a constant).
- Different parts of the internet have different dynamics.
- Using our measurements we miss only the nodes with short lifetime or with very small probability of being observed.

Open questions:

Trasformation "*n*-point process $-\stackrel{?}{-} \rightarrow$ 1-point process". Good canditate for X (Hawkes processes?). Universal inference $\langle Y \rangle \xrightarrow{?} X$.