Pattern avoiding permutations modulo pure descents

Jean-Luc Baril Sergey Kirgizov Armen Petrossian

Université de Bourgogne, Dijon, France

Pure descents in permutations

A descent $\pi_i \pi_{i+1}$ is pure if $\nexists j < i$ s.t. $\pi_{i+1} < \pi_j < \pi_i$. Equivalent permutations have the same values of pure descents.

- Regrouping values from consecutive pure descents we obtain a non-crossing partition. So, S_n^{\sim} is enumerated by Catalan numbers.
- In $S_n(231)$ any descent is pure.
- $S_n(231)$ is a set of representative elements of S_n^{\sim} .

Ordered forests are enumerated by Catalan numbers. A trivial bijection sends such forests to Dyck paths.

Single-source directed animals

See also "The pure descent statistic on permutations" (by JLB and SK, to appear in DM), where authors prove, among other things, that the number of n-length permutations with k pure descents is given by the unsigned Stirling number of the first kind https://oeis.org/A132393. Thus, pure descents are equidistributed with cycles in permutations.

1 2 3 4 5 6 7 8

Single-source directed animal is a connected subset of \mathbb{N}^2 growing from (0, 0) by using \uparrow and \rightarrow steps.

"Directed animals, forests and permutations" (E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani) shows that single-source directed animals are in bijection with the forests of binary trees.

$S_n(312)^\sim, S_n(321)^\sim$

 $S_n(312)^{\sim} = S_n(231, 312)$ $S_n(321)^{\sim} = S_n(231, 321)$ Using a result from "Restricted permutations" (R. Simion and F.W. Schmidt) we obtain 2^{n-1} .

Barred pattern

 $S_n(231, \underline{51}423)$ corresponds to a restricted $S_n(231)$ containing only binary trees. Thus, we obtain a subset of permutations enumerated by single-source directed animals.

Permutation avoids $51\overline{4}23$ iff every 4123 pattern can be extended to 51423, where underlined entries are adjacent.

Number of equivalence classes for some restricted sets of pattern avoiding permutations

Pattern	Sequence	Sloane	$a_n, 1 \le n \le 9$
$\{\}, \{231\}$	Catalan	A000108	1, 2, 5, 14, 42, 132, 429, 1430, 4862
$\{312\},\{321\}$	2^{n-1}	A011782	1, 2, 4, 8, 16, 32, 64, 128, 256
$\{231, \underline{51}\overline{4}23\}$	Directed animals	A005773	1, 2, 5, 13, 35, 96, 267, 750, 2123
{123}	Directed animals	A005773	1, 2, 5, 13, 35, 96, 267, 750, 2123
{132}	New		1, 2, 4, 10, 26, 66, 169, 437, 1130, ???
$\{213\}$	Special Dyck paths ?	A152225 ?	1, 2, 4, 9, 22, 56, 146, 388, 1048, ???

 $S_n(231)^{\sim}$ are in bijection with ordered forests

Permutation 8 4 1 2 3 6 5 7 9 13 11 10 12 with corresponding forest.

Our bijection transports the following statistics: $S_n(231)$ des=ides adj lrM rlm inv lmax lsum \mathcal{F}_n ledg=redg nod1 ordt leav vpat dept inpl

For a permutation π , we define:						
$des(\pi) = number of descents$ (which is also the number of pure descents);						
$\mathbf{ides}(\pi) = number \ of \ descents \ in \ \pi^{-1} \ (for \ \pi \in S_n(231), we have \ \mathbf{ides}(\pi) = \mathbf{des}(\pi));$						
$\operatorname{adj}(\pi) = number \text{ of adjacencies, i.e. descent } (\pi_i, \pi_{i+1})$ such that $\pi_{i+1} = \pi_i - 1$	•					
$\mathbf{lrM}(\pi) = number \text{ of left-to-right maxima, i.e. } i \geq 1$ such that $\pi_i > \pi_j$ for all	j < i;					
$\mathbf{rlm}(\pi) = number \ of \ right-to-left \ minima, \ i.e. \ i \geq 1$ such that $\pi_i < \pi_j$ for all j	i > i;	st	S(231)			
$inv(\pi) = number of inversions, i.e.$ pairs (π_i, π_j) with $\pi_i > \pi_j$ and $i < j$,		50				
$\mathbf{lmax}(\pi) = maximum \ value \ of \ the \ Lehmer \ code \ \ell_1 \ell_2 \dots \ell_n \ of \ \pi,$			Catalan			
<i>i.e.</i> $\max_{1 \le i \le n} \ell_i$ where $\ell_i = \{\pi_j > \pi_i, j < i\} ;$						
$lsum(\pi) = sum of all values of the Lehmer code of \pi.$	des.	ides. lmax	$\frac{1 - z + zy - \sqrt{z^2 y^2 - 2 z^2 y + z^2 - 2 zy - 2 z + 1}}{2}$			
			2zy			
For a forest $f \in \mathcal{F}_n$, we define		adi	$\frac{1 - zy + z - \sqrt{z^2 y^2 + 2 z^2 y - 3 z^2 - 2 zy - 2 z + 1}}{2}$			
ledg(f) = number of left edges, i.e., leftmost edges among its siblings;		J	2z			
$\mathbf{redg}(f) = number \ of \ right \ edges, \ i.e., \ rightmost \ edges \ among \ its \ siblings$		\mathbf{lrM}	$\frac{2}{2}$			
$(\mathbf{ledg}(f) = \mathbf{redg}(f));$			$2 - y + y\sqrt{1 - 4z}$			
$\mathbf{nod1}(f) = number of nodes with only one child;$		\mathbf{rlm}	$\frac{1 + z - zy - \sqrt{z^2 y^2 - 2 z^2 y + z^2 - 2 zy - 2 z + 1}}{2 z - 2 z $			
$\mathbf{ordt}(f) = number \ of \ ordered \ trees;$						
leav(f) = number of leaves, i.e., nodes without child;	ir	nv, lsum	$F(z, y) = \frac{1}{1 - r(F(zy, y) - 1) - r}$			
$\mathbf{vpat}(f) = number \ of \ vertical \ paths$ (a vertical path is a path between a node a	nd	,	1 - z(F(zy,y) - 1) - x			
one of its ancestors);						
dept(f) = depth, i.e., the maximal length of a vertical path;						
inpl(f) = internal path length, i.e., the sum of the lengths of all paths from a node						
to the root.						

$S_n(123)^{\sim}$ are in bijection with directed animals

Left: A permutation from $S(123)^{\sim}$ together with corresponding ordered forest of binary trees, which is bijectively related to a single-source directed animal. The idea of the construction consists in linking consecutive pure descents and joining obtained runs of pure descents in certain order.

Right: The ordered forest of ordered binary trees, constructed from the permutation on the left side, corresponds to another permutation of the same class.

In the same class the blocks of pure descents moves only horizontally (indeed, it is the only way because two permutations from the same class, by definition, should have the same values of pure descents). Pushing the blocks "to the right" in certain way we obtain a representative permutation.

Presented at The 15th International Conference on Permutation Patterns, 26-30 June 2017, Reykjavik University, Iceland.

