Pattern avoiding permutations modulo pure descents

Jean-Luc Baril Sergey Kirgizov Armen Petrossian
Université de Bourgogne, Dijon, France

Forests

- Regrouping values from consecutive pure descents we obtain a non-crossing partition So, S_{n}^{\sim} is enumerated by Catalan numbers.
- In $S_{n}(231)$ any descent is pure
- $S_{n}(231)$ is a set of representative elements of S_{n}^{\sim}

Barred pattern

$S_{n}(231, \underline{51423})$ corresponds to a restricted $S_{n}(231)$ containing only binary trees. Thus, we obtain a subset of permutations enumerated by single-source directed animals.

Permutation avoids 51423 iff every 4123 pattern can be extended to 51423, where underlined entries are adjacent.

Number of equivalence classes for some restricted sets of pattern avoiding permutations

Pattern \quad Sequence \quad Sloane $a_{n}, 1 \leq n \leq 9$
\{\}, \{231\}
$\{312\},\{321\}$ Catalan 2^{n-1}
$\{231,51423\}$ Directed animals \{123\} Directed animals

New Special Dyck paths ? A152225 ? 1, 2, 4, 9, 22, 56, 146, 388, 1048, ???

Single-source directed animals

Single-source directed animal is a connected subset of \mathbb{N}^{2} growing from $(0,0)$ by using \uparrow and \rightarrow steps.
"Directed animals, forests and permutations" (E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani) shows that single-source directed animals are in bijection with the forests of binary trees

$$
\begin{array}{r}
S_{n}(312) \sim, S_{n}(321)^{n} \\
S_{n}(312)^{\sim}=S_{n}(231,312) \\
S_{n}(321)^{\sim} \sim S_{n}(231,321)
\end{array}
$$

Using a result from"Restricted permutations" (R. Simion and F.W. Schmidt) we obtain 2^{n-1}

$S_{n}(231)^{\sim}$ are in bijection with ordered forests

Permutation 84123657913111012 with corresponding forest

Our bijection transports the following statistics: $S_{n}(231)$ des=ides adj lrM rlm inv lmax lsum $\mathcal{F}_{n} \quad$ ledg $=$ redg nod1 ordt leav vpat dept inpl

For a permutation π, we define:
$\operatorname{des}(\pi)=$ number of descents (which is also the number of pure descents);
ides $(\pi)=$ number of descents in π^{-1} (for $\pi \in S_{n}(231)$, we have $\operatorname{ides}(\pi)=\operatorname{des}(\pi)$);
$\operatorname{adj}(\pi)=$ number of adjacencies, i.e. descent $\left(\pi_{i}, \pi_{i+1}\right)$ such that $\pi_{i+1}=\pi_{i}-1 ;$
$\operatorname{lr} \mathrm{M}(\pi)=$ number of left-to-right maxima, i.e. $i \geq 1$ such that $\pi_{i}>\pi_{j}$ for all $j<i$;
$\operatorname{rlm}(\pi)=$ number of right-to-left minima, i.e. $i \geq 1$ such that $\pi_{i}<\pi_{j}$ for all $j>i$; \quad st
$\operatorname{inv}(\pi)=$ number of inversions, i.e. pairs $\left(\pi_{i}, \pi_{j}\right)$ with $\pi_{i}>\pi_{j}$ and $i<j$,
$\operatorname{lmax}(\pi)=$ maximum value of the Lehmer code $\ell_{1} \ell_{2} \ldots \ell_{n}$ of π,
i.e. $\max _{1 \leq i \leq n} \ell_{i}$ where $\ell_{i}=\left|\left\{\pi_{j}>\pi_{i}, j<i\right\}\right| ;$
$\operatorname{lsum}(\pi)=$ sum of all values of the Lehmer code of π.
des, ides, lmax
adj
lrM
rlm
inv, lsum
$\operatorname{ordt}(f)=$ number of ordered the
$\operatorname{eav}(f)=$ number of leves, ie, nodes withot
vpat $(f)=$ number of vertical paths (a vertical path is a path between a node and one of its ancestors);
$\operatorname{dept}(f)=$ depth, i.e., the maximal length of a vertical path;
$\operatorname{inpl}(f)=$ internal path length, i.e., the sum of the lengths of all paths from a node
to the root.

$S_{n}(123)^{\sim}$ are in bijection with directed animals

Left: A permutation from $S(123)^{\sim}$ together with corresponding ordered forest of binary trees, which is bijectively related to a single-source directed animal. The idea of the construction consists in linking consecutive pure descents and joining obtained runs of pure descents in certain order.

Right: The ordered forest of ordered binary trees, constructed from the permutation on the left side, corresponds to another permutation of the same class.

In the same class the blocks of pure descents moves only horizontally (indeed, it is the only way because two permutations from the same class, by definition, should have the same values of pure descents). Pushing the blocks "to the right" in certain way we obtain a representative permutation.

