Pattern distribution in faro words and permutations

Jean-Luc Baril Sergey Kirgizov

LIB, Université de Bourgogne Franche-Comté, Dijon, France {barjl,sergey.kirgizov}@u-bourgogne.fr

Faro words, $S_{n,k}$

A faro word is an n-length k-ary word $w = w_1 w_2 \dots w_n, w_i \in [1, k]$ equal to a faro shuffle $w = u_1 v_1 u_2 v_2 u_3 v_3 \dots$ of two non-decreasing words $u = u_1 u_2 \dots$ and $v = v_1 v_2 \dots$ such that $0 \leq |u| - |v| \leq 1$ and |u| + |v| = n.

Faro words are characterised by the property $w_i \leq w_{i+2}, i \in [1, n-2]$.

Let $\mathcal{S}_{n,k}$ denote the set of k-ary faro words of length n. Example: $S_{4,2} = \{1111, 1112, 1121, 1122, 1212, 1222, 2121, 2122, 2222\}.$

k(k-1)

k-1

 $|\mathcal{S}_{n,k}| = \binom{\lfloor \frac{n}{2} \rfloor + k - 1}{k - 1} \binom{\lfloor \frac{n}{2} \rfloor + k - 1}{k - 1}.$

Dispersed Dyck paths, \mathcal{B}_n

A dispersed Dyck path of length $n \ge 0$ is a lattice path that starts at (0,0), ends at (n,0), consisting of a sequence of flat F = (1,0), up U = (1,1) and down D = (1, -1) steps, while always remaining in first quadrant and with all flat steps lying only on the x-axis. We denote by \mathcal{B}_n the set of n-length dispersed Dyck path and we have $|\mathcal{B}_n| = \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Dispersed Dyck paths of length n are in trivial bijection with n-length prefixes of Dyck paths, also known as ballot paths.

Bijection f between $S_{n,k}$ and $B_{n+2(k-1),k-1}$

Decomposition into descent pairs and singletons

Blocks of a q-ary faro word w:

- descent pair is a consecutive subword $w_i w_{i+1}$, such that $w_i > w_{i+1}$.
- **singleton** in a faro word is a letter w_i standing outside any descent pair.

Order relation on all possible descent pairs and singletons: $q \leq p$ iff qp is a k-ary faro word different from a descent pair.

Theorem. k-ary faro words are in bijection with all multichains of the lattice.

 $32 \leq 32 \prec 3 \prec 43$ corresponds to the faro word $11313232343 = (1)^2 (31)(32)^2 (3)(43).$

Theorem. There is a bijection f from $S_{n,k}$ to the set $\mathcal{B}_{n+2(k-1),k-1}$ of dispersed Dyck paths of length n + 2(k - 1) having exactly k - 1 peaks.

Example: the image by f of the 5-ary word 11313232343 :

• For a given $w \in \mathcal{S}_{n,k}$, initialise $T_i := 0$ for $i \in [0, 3(k-1)]$. 2 Let $T_{3(x-1)}$ be the number of occurrences of singleton x in the decomposition of w 3 Let $T_{3(x-1)-1}$ be one plus the number of descent pairs xy in w• Let $T_{3(x-1)+1}$ be one plus the number of descent pairs yx in w**5** Construct a dispersed Dyck path f(w) using the array T as follows: $f(w) = F^{T_0} U^{T_1} D^{T_2} F^{T_3} \dots F^{T_{3(k-2)}} U^{T_{3(k-2)+1}} D^{T_{3(k-2)+2}} F^{T_{3(k-1)}}.$

Faro permutations, \mathcal{P}_n

Let \mathcal{P}_n be the set of *faro permutations* of length *n*, *i.e.*, the set of permutations in $\mathcal{S}_{n.n.}$ Obviously we have $\mathcal{P}_n \subset Av_n(321)$ and $|\mathcal{P}_n| = \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$. For instance, $\mathcal{P}_3 = \{123, 132, 213\}$.

A bijection $g: \mathcal{P}_n \to \mathcal{B}_n$

k2

|k1|

• Apply bijection f.

2 Remove peaks (i.e. patterns UD).

Transport of consecutive patterns

Faro permutation	Dispersed Dyck path
21	U
12	$\mathbf{D}\mathbf{U} + \mathbf{D}\mathbf{D} + \mathbf{D}\mathbf{F} + \mathbf{F}\mathbf{F} + \mathbf{F}\mathbf{U}$
132	$\mathbf{U}\mathbf{U}+\mathbf{D}\mathbf{U}+\mathbf{F}\mathbf{U}$
213	$\mathbf{D}\mathbf{U} + \mathbf{D}\mathbf{D} + \mathbf{D}\mathbf{F}$
123	$\sum_{oldsymbol{\lambda},oldsymbol{\mu}\in\{\mathbf{F},\mathbf{U},\mathbf{D}\}}oldsymbol{\lambda}\mathbf{F}oldsymbol{\mu}$

Exemple: the image by g of the permutation 14253 :

remove 🕇 peaks

42 53

1

Examples: O.g.f. with respect to the length and the number of descents

Transport of consecutive patterns

• α^+ means one or more consecutive patterns α • α^* means zero or more consecutive patterns α .

Faro word	Dispersed Dyck path	
11	\mathbf{FF}	
21	$\mathbf{U}\mathbf{U}$	
12	$\mathrm{DD}(\mathrm{UD})^*\mathrm{UU} + \mathrm{DD}(\mathrm{UD})^*\mathrm{D} +$	
	$\mathrm{DD}(\mathrm{UD})^*\mathrm{F} + \mathrm{F}(\mathrm{UD})^+\mathrm{F} + \mathrm{F}(\mathrm{UD})^*\mathrm{UU}$	
111	FFF	
112	$FF(UD)^+F + FF(UD)^*UU$	
122	$ m F(UD)^+FF + DD(UD)^*FF$	
121	$\mathbf{FUU} + \mathbf{UUU}$	
212	$\mathbf{DDF} + \mathbf{DDD}$	
132	$F(UD)^+UU + U(UD)^+UU + DD(UD)^*UU$	
213	$\mathrm{DD}(\mathrm{UD})^+\mathrm{F} + \mathrm{DD}(\mathrm{UD})^+\mathrm{D} + \mathrm{DD}(\mathrm{UD})^*\mathrm{UU}$	
123	$\mathrm{DD}(\mathrm{UD})^*\mathrm{F}(\mathrm{UD})^*\mathrm{UU} + \mathrm{DD}(\mathrm{UD})^*\mathrm{F}(\mathrm{UD})^+\mathrm{F}$	
	$+\mathbf{F}(\mathbf{UD})^+\mathbf{F}(\mathbf{UD})^*\mathbf{UU}+\mathbf{F}(\mathbf{UD})^+\mathbf{F}(\mathbf{UD})^+\mathbf{F}$	
Example: O.g.f. for faro words in $S_{n,k}$ avoiding 11		
	2y(x+1)	
$\overline{1 - y - x + x^2 - xy}$	$y + x^3 + (x+1)\sqrt{x^4 - 2x^2y - 2x^2 + y^2 - 2y + 1}$	
For $k = 3$, the sequence seems to be OEIS A004116: $u_n = \left\lfloor \frac{n^2 + 6n}{4} \right\rfloor$		

 $\sqrt{-4x^2y+1} - 2x + 1$ Descent popularity on \mathcal{P}_n : $u_n = \frac{n+1}{2} \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} - 2^{n-1}$ (OEIS A107373) $x^{2} + 2 x^{3} + 7 x^{4} + 14 x^{5} + 38 x^{6} + 76 x^{7} + 187 x^{8} + 374 x^{9} + 874 x^{10} + 1748 x^{11} + 3958 x^{12} + \dots$ O.g.f. with respect to the length and the number of 213 occurrences $(y-1)\sqrt{-4x^2y+1+y+1}$ $y\left(\sqrt{-4x^2y+1}-2x+1\right)$ Popularity of 213: $x^3 + 4x^4 + 10x^5 + 28x^6 + 61x^7 + \dots$ (New) • faro involutions are counted by the Fibonacci numbers • faro derangements are counted by the Catalan numbers

Open questions

- We know that the diagonal set $S_{n,n}$ is enumerated by $u_0 = 1, u_1 = 2$ and $9n(3n+2)(3n-1)(18n^3+51n^2+41n+6)(1+3n)^2u_n+36n(n+1)(54n^5+90n^4-87n^3-217n^2-112n-20)u_{n+1}=0$ $16n(n+3)(n+2)(18n^3-3n^2-7n-2)(n+1)^2u_{n+2}$ **Open question:** Can we obtain similar results for all other diagonal sets? • Conjecture: Subexcedent in $\mathcal{S}_{n,n} = |2143$ -avoiding Dumont permutations • Extend the definition of faro words to shuffles of two (or more) words avoiding a pattern different than 21.
- Investigate the distribution and avoidance of classical patterns
- Can one characterize the image by g^{-1} of classical pattern statistics on paths?

Version 2. A typo and the definition of the order \leq are corrected.

Presented at the Virtual 2020 Permutation Patterns Workshop, 30 June - 1 July.

Shuffle photo source : https://fr.m.wikipedia.org/wiki/Fichier:Riffle_shuffle.jpg