Pattern distribution in faro words and permutations

Jean-Luc Baril Sergey Kirgizov
LIB, Université de Bourgogne Franche-Comté, Dijon, France
\{barjl,sergey.kirgizov\}@u-bourgogne.fr

Faro words, $\mathcal{S}_{n, k}$

A faro word is an n-length k-ary word $w=w_{1} w_{2} \ldots w_{n}, w_{i} \in[1, k]$ equal to a faro shuffle $w=u_{1} v_{1} u_{2} v_{2} u_{3} v_{3} \ldots$ of two non-decreasing words $u=u_{1} u_{2} \ldots$ and $v=v_{1} v_{2} \ldots$ such that $0 \leqslant|u|-|v| \leqslant 1$ and $|u|+|v|=n$.

Faro words are characterised by the property $w_{i} \leqslant w_{i+2}, i \in[1, n-2]$
Let $\mathcal{S}_{n, k}$ denote the set of k-ary faro words of length n.
Example: $\mathcal{S}_{4,2}=\{1111,1112,1121,1122,1212,1222,2121,2122,2222\}$

$$
\left|\mathcal{S}_{n, k}\right|=\binom{\left\lfloor\frac{n}{2}\right\rfloor+k-1}{k-1}\binom{\left\lceil\frac{n}{2}\right\rceil+k-1}{k-1} .
$$

Decomposition into descent pairs and singletons

Faro permutations, \mathcal{P}_{n}

Let \mathcal{P}_{n} be the set of faro permutations of length n, i.e., the set of permutations in $\mathcal{S}_{n, n}$ Obviously we have $\mathcal{P}_{n} \subset A v_{n}(321)$ and $\left|\mathcal{P}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$. For instance, $\mathcal{P}_{3}=\{123,132,213\}$.

A bijection $g: \mathcal{P}_{n} \rightarrow \mathcal{B}_{n}$
(1) Apply bijection f
(2) Remove peaks (i.e. patterns $U D$).

Transport of consecutive patterns
Faro permutation Dispersed Dyck path

21	U
12	$\mathrm{DU}+\mathrm{DD}+\mathrm{DF}+\mathrm{FF}+\mathrm{FU}$
132	$\mathrm{UU}+\mathrm{DU}+\mathrm{FU}$
213	$\mathrm{DU}+\mathrm{DD}+\mathrm{DF}$
123	$\sum_{\lambda, \mu \in\{\mathbf{F}, \mathrm{U}, \mathrm{D}\}} \lambda \mathrm{F} \mu$

Exemple: the image by g of the permutation 14253 :

Examples: O.g.f. with respect to the length and the number of descents

$$
\frac{2}{\sqrt{-4 x^{2} y+1}-2 x+1}
$$

Descent popularity on $\mathcal{P}_{n}: u_{n}=\frac{n+1}{2}\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}-2^{n-1}$ (OEIS A107373) $x^{2}+2 x^{3}+7 x^{4}+14 x^{5}+38 x^{6}+76 x^{7}+187 x^{8}+374 x^{9}+874 x^{10}+1748 x^{11}+3958 x^{12}+$. O.g.f. with respect to the length and the number of 213 occurrences

$$
\frac{(y-1) \sqrt{-4 x^{2} y+1}+y+1}{y\left(\sqrt{-4 x^{2} y+1}-2 x+1\right)}
$$

Popularity of 213: $x^{3}+4 x^{4}+10 x^{5}+28 x^{6}+61 x^{7}+\ldots$ (New)

- faro involutions are counted by the Fibonacci numbers
- faro derangements are counted by the Catalan numbers

Dispersed Dyck paths, \mathcal{B}_{n}

A dispersed Dyck path of length $n \geqslant 0$ is a lattice path that starts at $(0,0)$, ends at $(n, 0)$, consisting of a sequence of flat $F=(1,0)$, up $U=(1,1)$ and down $D=(1,-1)$ steps, while always remaining in first quadrant and with all flat steps lying only on the x-axis. We denote by \mathcal{B}_{n} the set of n-length dispersed Dyck path and we have $\left|\mathcal{B}_{n}\right|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$

Dispersed Dyck paths of length n are in trivial bijection with n-length prefixes of Dyck paths, also known as ballot paths.

Bijection f between $\mathcal{S}_{n, k}$ and $\mathcal{B}_{n+2(k-1), k-1}$
Theorem. There is a bijection f from $\mathcal{S}_{n, k}$ to the set $\mathcal{B}_{n+2(k-1), k-1}$ of dispersed Dyck paths of length $n+2(k-1)$ having exactly $k-1$ peaks.
Example: the image by f of the 5 -ary word 11313232343

(1) For a given $w \in \mathcal{S}_{n, k}$, initialise $T_{i}:=0$ for $i \in[0,3(k-1)]$. (2) Let $T_{3(x-1)}$ be the number of occurrences of singleton x in the decomposition of w (3) Let $T_{3(x-1)-1}$ be one plus the number of descent pairs $x y$ in w (4) Let $T_{3(x-1)+1}$ be one plus the number of descent pairs $y x$ in w © Construct a dispersed Dyck path $f(w)$ using the array T as follows:
$f(w)=F^{T_{0}} U^{T_{1}} D^{T_{2}} F^{T_{3}} \ldots F^{T_{3(k-2)}} U^{T_{3(k-2)+1}} D^{T_{3(k-2)+2}} F^{T_{3(k-1)}}$.

Transport of consecutive patterns

- α^{+}means one or more consecutive patterns α
- α^{*} means zero or more consecutive patterns α.

Faro word	Dispersed Dyck path
11	FF
21	UU
12	$\begin{gathered} \mathrm{DD}(\mathrm{UD})^{*} \mathrm{UU}+\mathrm{DD}(\mathrm{UD})^{*} \mathrm{D}+ \\ \mathrm{DD}(\mathrm{UD})^{*} \mathrm{~F}+\mathrm{F}(\mathrm{UD})^{+} \mathrm{F}+\mathrm{F}(\mathrm{UD})^{*} \mathrm{UU} \end{gathered}$
111	FFF
112	$\mathrm{FF}(\mathrm{UD})^{+} \mathrm{F}+\mathrm{FF}(\mathrm{UD})^{*} \mathrm{UU}$
122	F(UD) ${ }^{+} \mathrm{FF}+\mathrm{DD}(\mathrm{UD})^{*} \mathrm{FF}$
121	FUU + UUU
212	DDF + DDD
132	$\mathrm{F}(\mathrm{UD})^{+} \mathbf{U U}+\mathrm{U}(\mathrm{UD})^{+} \mathbf{U U}+\mathrm{DD}(\mathrm{UD})^{*} \mathrm{UU}$
213	$\mathrm{DD}(\mathrm{UD})^{+} \mathrm{F}+\mathrm{DD}(\mathrm{UD})^{+} \mathrm{D}+\mathrm{DD}(\mathrm{UD})^{*} \mathrm{UU}$
123	$\mathrm{DD}(\mathrm{UD})^{*} \mathrm{~F}(\mathrm{UD})^{*} \mathrm{UU}+\mathrm{DD}(\mathrm{UD})^{*} \mathrm{~F}(\mathrm{UD})^{+} \mathbf{F}$
	$+\mathrm{F}(\mathrm{UD})^{+} \mathbf{F}(\mathrm{UD})^{*} \mathrm{UU}+\mathrm{F}(\mathrm{UD})^{+} \mathbf{F}(\mathrm{UD})^{+} \mathbf{F}$

Example: O.g.f. for faro words in $\mathcal{S}_{n, k}$ avoiding 11
$2 y(x+1)$
$\overline{1-y-x+x^{2}-x y+x^{3}+(x+1) \sqrt{x^{4}-2 x^{2} y-2 x^{2}+y^{2}-2 y+1}}$
For $k=3$, the sequence seems to be OEIS A004116: $u_{n}=\left\lfloor\frac{n^{2}+6 n-3}{4}\right\rfloor$

Open questions

- We know that the diagonal set $\mathcal{S}_{n, n}$ is enumerated by $u_{0}=1, u_{1}=2$ and
$9 n(3 n+2)(3 n-1)\left(18 n^{3}+51 n^{2}+41 n+6\right)(1+3 n)^{2} u_{n}+36 n(n+1)\left(54 n^{5}+90 n^{4}-87 n^{3}-217 n^{2}-112 n-20\right) u_{n+1}=$ $16 n(n+3)(n+2)\left(18 n^{3}-3 n^{2}-7 n-2\right)(n+1)^{2} u_{n+2}$
Open question: Can we obtain similar results for all other diagonal sets?
- Conjecture: |Subexcedent in $\mathcal{S}_{n, n}|=| 2143$-avoiding Dumont permutations \mid
- Extend the definition of faro words to shuffles of two (or more) words avoiding a pattern different than 21.
- Investigate the distribution and avoidance of classical patterns
- Can one characterize the image by g^{-1} of classical pattern statistics on paths?

