Enumeration of Dyck paths with air pockets

Jean-Luc Baril Sergey Kirgizov Rémi Maréchal Vincent Vajnovszki

LIB, Université de Bourgogne Franche-Comté, Dijon, France

Dyck paths with air pockets, \mathcal{A}_n

A Dyck path with air pockets is a non empty lattice path in the first quadrant of \mathbb{Z}^2 starting at the origin, ending on the x-axis, and consisting of up-steps U = (1, 1) and down-steps $D_k = (1, -k), k \ge 1$, where two down steps cannot be consecutive (we set $D = D_1$ for short). The set of such paths is denoted by \mathcal{A} .

Let \mathcal{A}_n denote the set of *n*-length Dyck paths with air pockets. **Example:**

Transport of consecutive patterns

Dyck path with air pockets	Peakless Motzkin path
\mathbf{U}	$\mathbf{F} + \mathbf{U} = \mathbf{F} + \mathbf{D}$
$\mathbf{D} = \mathbf{U}\mathbf{D}$	$\mathbb{1}_{\mathrm{F}} + \mathrm{UFD} + \mathbb{1}_{\mathrm{UMD}} + \mathrm{U}^2 \mathcal{M}\mathrm{D}^2$
\mathbf{DU}	${f UFD}+{f U}^2{\cal M}{f D}^2$
$\mathbf{U}\mathbf{U}$	${f F}-{f \hat 1}$
$\Delta_{ m k}$	$\mathbb{1}_{\mathrm{F}^{k}} + \mathrm{U}\mathrm{F}^{k}\mathrm{D} + \mathbb{1}_{\mathrm{F}^{k-1}\mathrm{U}\mathcal{M}\mathrm{D}} + \mathrm{U}\mathrm{F}^{k-1}\mathrm{U}\mathcal{M}\mathrm{D}^{2}$
Peak	$\mathbf{U}+\mathbf{\hat{1}}$
\mathbf{Ret}	$\mathbf{\hat{n}} - \mathbf{LastF}$
SLast	\mathbf{Ret}

Figure: $\mathcal{A}_5 = \{UDU^2D_2, U^2D_2UD, U^2DUD_2, U^4D_4\}.$

Cardinality formula (OEIS A004148):

$$|\mathcal{A}_n| = \sum_{k=\lceil n/2\rceil}^n \frac{1}{k} \binom{k}{n-k} \binom{k}{n-1-k}.$$

Generating function:

$$\sum_{n=2}^{\infty} |\mathcal{A}_n| \cdot x^n = \frac{1 - x - x^2 - \sqrt{x^4 - 2x^3 - x^2 - 2x + 1}}{2x}$$

A Dyck path with air pockets is *prime* if it ends with D_k , $k \ge 2$, and it returns to the x-axis only once. The set of such paths is denoted by \mathcal{P} .

Lowered and elevated paths

We introduce two transformations of Dyck paths with air pockets. If α is a Dyck path with air pockets of the form $U\beta D_k$ (where β is either empty or in \mathcal{A}), then we define the *elevated* version of α as $\alpha^{\sharp} = U^2\beta D_{k+1}$. We also define the inverse operation \cdot^{\flat} , and call α^{\flat} the *lowered* version of α .

Example:

For any path α (in \mathcal{A} or in \mathcal{M} , depending on the relevant column in the table):

- $\hat{\mathbf{1}}(\alpha) = 1, \, \hat{\mathbf{2}}(\alpha) = 2, \, \hat{\mathbf{n}}(\alpha) = n, \, \text{and so on;}$
- $\mathbb{1}_{\beta}(\alpha)$ is 1 if $\alpha = \beta$ and 0 otherwise;
- $\mathbb{1}_{\mathbf{UMD}}(\alpha)$ is 1 if there exists $\beta \in \mathcal{M}$ such that $\alpha = U\beta D$ and 0 otherwise;
- $\mathbf{U}^2 \mathcal{M} \mathbf{D}^2(\alpha)$ is the number of occurrences of $U^2 \beta D^2$ in α for $\beta \in \mathcal{M}$;
- $\Delta_{\mathbf{k}}(\alpha)$ is the number of occurrences of $U^k D_k$ in α ;
- $\mathbf{Peak}(\alpha) = \sum_{\mathbf{k} \ge 1} \mathbf{UD}_{\mathbf{k}}(\alpha);$
- $\mathbf{Ret}(\alpha)$ is the number of returns to the *x*-axis of α ;
- Last $\mathbf{F}(\alpha)$ is the position of the rightmost flat-step in α ;
- **SLast**(α) is the size of the last step of α (i.e. k if the last step is D_k).

Pattern popularity in Dyck paths with air pockets

The popularity of various patterns (i.e. total number of occurrences of said patterns) in \mathcal{A}_n ($2 \leq n \leq 11$) can be found in the following table:

Pattern	Pattern popularity in \mathcal{A}_n	OEIS
U	1, 2, 5, 13, 32, 80, 201, 505, 1273, 3217	A110320
D	1, 0, 2, 3, 7, 17, 40, 97, 238, 587	A051291
Peak	1, 1, 3, 7, 16, 39, 95, 233, 577, 1436	A203611
Ret	1, 1, 3, 6, 13, 29, 65, 148, 341, 793	A093128

Figure: The paths $U^3D_2UD_2$ (left) and $U^4D_2UD_3$ (right) are lowered and elevated versions of one another.

The operations \cdot^{\flat} and \cdot^{\ddagger} will help us to define a bijection between \mathcal{A}_n and a class of well-known lattice paths.

Bijection with peakless Motzkin paths, \mathcal{M}_n

A peakless Motzkin path is a non empty lattice path in the first quadrant of \mathbb{Z}^2 starting at the origin, ending on the x-axis, consisting of up-steps U = (1, 1), down-steps D = (1, -1), and flat-steps F = (1, 0), having no occurrence of UD. The set of such paths is denoted by \mathcal{M} , and the subset of n-length peakless Motzkin paths is denoted by \mathcal{M}_n .

$$\begin{array}{l} \mathcal{A} \xrightarrow{\psi} \mathcal{M} \\ \\ \alpha \xrightarrow{\psi} \begin{cases} F & \alpha = UD \\ U\psi(\beta)D & \alpha = \beta UD, \beta \in \mathcal{A} \\ \psi(\alpha^{\flat})F & \alpha \in \mathcal{P} \\ \psi(\gamma^{\flat})U\psi(\beta)D & \alpha = \beta\gamma, \beta \in \mathcal{A}, \gamma \in \mathcal{P} \end{array} \end{array}$$

Cat
$$0, 1, 1, 4, 8, 19, 44, 102, 239, 563$$

 Δ_k $0, \dots, 0, 1, 0, 2, 3, 7, 17, 40, 97, 238, 587$ A051291
 $\Delta_{\geq k}$ $0, \dots, 0, 1, 1, 3, 6, 13, 30, 70, 167, 405$ A201631(= u_n)
 $\Delta_{\leq k}$ $\Delta_{\leq 1}$ 1, 0, 2, 3, 7, 17, 40, 97, 238, 587 $u_n - u_{n-k}$
 $\Delta_{\leq 2}$ 1, 1, 2, 5, 10, 24, 47, 137, 335, 825, ...
 $\Delta_{\leq 3}$ 1, 1, 3, 5, 12, 27, 64, 154, 375, 922, ...
etc.

- $Cat(\alpha)$ is the number of catastrophes of α , i.e. steps of the form $D_k, k \ge 2$, ending on the *x*-axis;
- $\Delta_{\geq k}(\alpha)$ is the number of occurrences of $U^{\ell}D_{\ell}, \ell \geq k$, in α ;
- $\Delta_{\leq k}(\alpha)$ is the number of occurrences of $U^{\ell}D_{\ell}$, $1 \leq \ell \leq k$, in α .

We also define non-decreasing Dyck paths with air pockets as paths of \mathcal{A} whose sequence of valley heights is non-decreasing, i.e. the sequence of the minimal ordinates of the occurrences of $D_k U$, $k \ge 1$, is non-decreasing from left to right. The set of such paths is denoted by \mathcal{A}^{\nearrow} , and the subset of *n*-length non-decreasing Dyck paths with air pockets is denoted by \mathcal{A}_n^{\nearrow} . We get the following table:

Pattern Pattern popularity in \mathcal{A}_n^{\nearrow}

OEIS

 $\psi(\alpha^{\flat})$

Theorem: The map ψ induces a bijection between \mathcal{A}_n and \mathcal{M}_{n-1} .

Pattern popularity generating function example

For all $k \ge 1$, the g.f. for the total number of occurrences of $U^{\ell}D_{\ell}, \ell \ge k$, in \mathcal{A}_n is: $\frac{x^{k+1}\left(1+2x^2-x^3+(1-x)\sqrt{(x^2+x+1)(x^2-3x+1)}\right)}{2(1-x)\sqrt{(x^2+x+1)(x^2-3x+1)}}.$ (OEIS A201631)

U	1, 2, 5, 13, 32, 76, 176, 400, 896, 1984	A098156
D	1, 0, 2, 3, 7, 15, 33, 72, 157, 341	
Peak	1, 1, 3, 7, 16, 36, 80, 176, 384, 832	A045891
Ret	1, 1, 3, 6, 13, 27, 56, 115, 235, 478	A099036
Cat	0, 1, 1, 4, 8, 18, 38, 80, 166, 342	A175657
Δ_k	$0, \ldots, 0, 1, 0, 2, 3, 7, 15, 33, 72, 157, 341$	
	k-1 zeroes	
$\Delta_{\geqslant k}$	$0, \ldots, 0, 1, 1, 3, 6, 13, 28, 61, 133, 290, 631$	New $(= v_n)$
	k-1 zeroes	
$\Delta_{\leqslant k}$	$\Delta_{\leqslant 1} 1, 0, 2, 3, 7, 15, 33, 72, 157, 341$	$v_n - v_{n-k}$
	$\Delta_{\leq 2}$ 1, 1, 2, 5, 10, 22, 48, 105, 229, 498	
	$\Delta_{\leqslant 3}$ 1, 1, 3, 5, 12, 25, 55, 120, 262, 570	
	etc.	

Presented at the 2022 edition of the JNIM (Journées Nationales de l'Informatique Mathématique), March 31.