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Abstract
Recently, the authors introduced new families of Dyck paths having a first decompo-
sition constrained by the height or by the number of returns. In this work we extend
the study to Motzkin paths and 2-colored Motzkin paths. For these new sets, we
provide enumerative results by giving bivariate generating functions with respect
to the length and another parameter, and we construct one-to-one correspondences
with several restricted classes of ordered trees. We also deal with Schröder and Rior-
dan paths. As a byproduct, we present a bijective proof of M(x)2 = 1

1−2xM( x2

1−2x),
where M(x) is the generating function of Motzkin numbers.

1. Introduction and Notations

A Motzkin path of length n ≥ 0 is a lattice path starting at point (0, 0), ending at
(n, 0), and never going below the x-axis, consisting of up steps U = (1, 1), down
steps D = (1,−1) and flat steps F = (1, 0). Let Mn be the set of Motzkin paths
of length n, and M =

⋃
n≥0 Mn. A Dyck path of semilength n is a Motzkin path

of length 2n with no flat steps. Let Dn be the set of Dyck paths of semilength n,
and D =

⋃
n≥0 Dn. Dyck (resp. Motzkin) paths of semilength (resp. length) n are

enumerated by the n-th Catalan number cn = 1
n+1

(2n
n

)
(resp. by the n-th Motzkin

number
∑⌊n/2⌋

k=0

( n
2k

)
· ck) which is the general term of the sequence A000108 (resp.

A001006) in the On-line Encyclopedia of Integer Sequences [20].
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Many studies on Motzkin and Dyck paths appear in the literature. Generally,
they consist in enumerating these paths according to several parameters, such as
length, height, number of occurrences of a pattern, number of returns to the x-
axis (see for instance [10, 16, 17, 19] for Dyck paths and [2, 5, 7, 14] for Motzkin
paths). Also, many bijections have been found between these paths and various
combinatorial objects such as Young tableaux, pattern avoiding permutations, RNA
shapes and so on. See [21] for an overview.

Recently in [3], the authors introduced and enumerated the subset Ds,⋄ of Dyck
paths having a restricted first return decomposition. More precisely, given a function
s : D → N, called statistic, and a comparison operator ⋄on N, the set Ds,⋄ is
the union of the empty Dyck path with all Dyck paths P having a first return
decomposition P = UαDβ satisfying the conditions:

{
α,β ∈ Ds,⋄,

s(UαD)⋄s(β).
(1)

For n ≥ 0, we denote by Ds,⋄
n the set of Dyck paths of semilength n in Ds,⋄.

Whenever ⋄equals ≥ and s(P ) is the maximal height h(P ) reached by P (resp.
s(P ) is the number of returns in P ), they prove algebraically and bijectively that
Ds,⋄

n is in one-to-one correspondence with the set Mn of Motzkin paths of length
n. So, its generating function is

M(x) =
1− x−

√
1− 2x− 3x2

2x2

and the first coefficients of xn, n ≥ 0, in the Taylor expansion are 1, 1, 2, 4, 9, 21, 51, 127
(see Motzkin sequence A001006 in [20]).

The purpose of the present paper is to extend the study to Motzkin paths that
naturally generalize Dyck paths. Let M ∈ M be a non-empty Motzkin path, it
can be uniquely written either M = UαDβ or M = Fα with α,β ∈ M. This
decomposition will be called the first return decomposition of M (see Figure 1 for
an illustration of this decomposition).

α β α

Figure 1: First return decompositions UαDβ and Fα of a Motzkin path.

Based on this decomposition and in the same way as for Dyck paths in [3], we
construct a new collection of subsets of M as follows. Given a statistic function
s : M → N, and a comparison operator ⋄on N, the set Ms,⋄ is the union of the
empty Motzkin path with all Motzkin paths M having a first return decomposition
satisfying one of the two following conditions:
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(C1) M = UαDβ with α,β ∈ Ms,⋄ and s(UαD)⋄s(β), or

(C2) M = Fα with α ∈ Ms,⋄ and s(F )⋄s(α).
For n ≥ 0, we denote by Ms,⋄

n the set of Motzkin paths of length n in Ms,⋄. For
instance, if the operator ⋄is = and s is a constant statistic (i.e., s(M) = 0 for any
M ∈ M), then we obviously have Ms,⋄

n = Mn for n ≥ 0.

In this paper, we focus on the sets Ms,⋄, where the statistic s(P ) is either the
number r(P ) of returns (a return is a down step D that touches the x-axis) or the
maximal height h(P ) reached by the path.

Due to the above definition ofMs,⋄ whenever s ∈ {r, h}, a Motzkin path in Ms,≥

cannot contain any occurrence of FU because (C2) implies that 0 = s(F ) ≥ s(α),
and thus α = F k for some k ≥ 0. Conversely, Motzkin paths in Ms,≥ can be
constructed from Dyck paths in Ds,≥ by possibly adding flat steps before down
steps or at the end. Since the two sets Dr,≥

n and Dh,≥
n are in bijection with the set

Mn (see [3]), the generating function Ms(x) of Ms,≥ for s ∈ {h, r} satisfies

Ms(x) =
1

1− x
·M

(
x2

1− x

)
.

The first coefficients of the Taylor expansion are 1, 1, 2, 3, 6, 11, 22, 43, 87, 176, 362, 748,
which correspond to the sequence A026418 in [20].

In the same way, we define the set Rs,⋄ (resp. Ss,⋄) of Riordan paths (resp.
of Schröder paths), i.e., the set of Motzkin paths in Ms,⋄ with no flat steps on
the x-axis (resp. where any maximal run of flats is of even length). As above,
whenever s ∈ {h, r}, the generating functions Rs(x) and Ss(x) of Rs,⋄ and Ss,⋄

satisfy respectively

Rs(x) = M

(
x2

1− x

)
and Ss(x) =

1

1− x2
·M

(
x2

1− x2

)
.

The first coefficients of the Taylor expansion of Rs(x) and Ss(x) are respectively
1, 1, 1, 3, 5, 11, 21, 44, 89, 186 and 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, and the even ranks of
this last sequence generate the Catalan numbers (A097331 in [20]). Note that Ss(x)
is the binomial transform [18] of the Motzkin generating function, evaluated on the
monomial x2. So, we have Ss(x) = C(x2), where C(x) is the generating function
for the Catalan numbers [13].

The paper is organized as follows. In Section 2, we deal with the case where
s = r and ⋄is ≥. We provide enumerating results for the cardinality of the set
Mr,≥ according to the length and the number of returns. We give a constructive
bijection φ between this set and the set of ordered trees with no branches of length
one, and we show how φ transports several statistics. As a byproduct, we treat the
case of Riordan and Schröder paths.

In Section 3, we focus on the setMh,≥ (the operator⋄is ≥, and the statistic is the
height). We provide a closed form of the generating function for the set of Motzkin
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paths having a given height k ≥ 0 in Mh,≥, and we deduce a continued fraction for
the generating function of Mh,≥. We give a constructive one-to-one correspondence
ψ between Motzkin paths in Mh,≥ and ordered trees with no branches of length
one, and we show how ψ transports several parameters. So, we deduce a constuctive
bijection ψ−1 ◦φ from Mr,≥ to Mh,≥.

In Section 4, we extend our study to the set M̄ of 2-Motzkin paths, i.e., Motzkin
paths where flat steps are of two kinds: straight and wavy. Using similar reasonings
already done in Sections 2 and 3, we give enumerative results for the set M̄s,≥

n ,
s ∈ {r, h}, and we present a constructive bijection between M̄s,≥ and the set of
ordered unary-binary trees where the root has exactly two children. As a byproduct,
we obtain a bijective proof of the equality M(x)2 = 1

1−2xM( x2

1−2x).

Finally, we conclude by presenting possible extensions of this work.

2. Motzkin Paths Constrained by the Number of Returns

In this section, the statistic s is the number of down steps D that touch the x-axis
(called number of returns), and the comparison operator ⋄is ≥.

Let A(x, y) =
∑

k,n≥0
an,kxnyk be the generating function where the coefficient

an,k of xnyk is the number of Motzkin paths with k returns in Mr,≥
n .

Theorem 2.1. The generating function A(x, y) is given by

A(x, y) = A0 (x) +A1(x)y +A2(x)y
2

where

A0 (x) =
1

1− x
, A1(x) =

1− x− x2 −
√
1− 2x− x2 + 2x3 − 3x4

2x2(1− x)
, and

A2(x) =
1− 2x− x2 + 2x3 − x4 − (1− x− x2)

√
1− 2x− x2 + 2x3 − 3x4

2x4 (1− x)
.

Proof. A Motzkin path M in Mr,≥
n is either of the form M = Fn, or M = UαDβ,

where α,β ∈ Mr,≥ and r(UαD) = 1 ≥ r(β). Using this last inequality, β is
necessarily of one of two following forms: (i) β = F k, or (ii) β = UγDF k with
γ ∈ Mr,≥ and k ≥ 0. Then, we obtain the functional equation

A(x, y) =
1

1− x
+

x2y

1− x
A(x, 1) +

x4y2

1− x
A(x, 1)2.

A straightforward calculation provides the results.
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Notice that we retrieve the above generating function Mr(x) for the sets Mr,≥
n ,

n ≥ 0, by calculating A(x, 1):

Mr(x) = A(x, 1) =
1− x− x2 −

√
1− 2x− x2 + 2x3 − 3 x4

2x4
.

The first terms of the Taylor expansion are 1+x+2x2+3x3 +6x4 +11x5 +22x6 +
43x7 +87x8 +176x9 +362x10 (see A026418 in [20]). Table 1 presents the first values
of coefficient an,k.

k\n 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1

1 1 2 4 7 13 24 46 89 176

2 1 3 8 18 40 86 185
∑

1 2 3 6 11 22 43 87 176 362

Table 1: Number an,k of Motzkin paths with k returns in Mr,≥
n , 1 ≤ n ≤ 10 and

0 ≤ k ≤ 2. For k ≥ 3 and n ≥ 1, we have an,k = 0.

The end of this section is dedicated to establishing a bijective link between Mr,≥
n

and a restricted set of ordered trees with n edges.

An ordered tree is a rooted tree where the order of subtrees matters. A leaf is a
vertex with no child. According to the terminology used in [11], a vertex which is
not a leaf or the root is called a node. A branch node is a node with at least two
children, and a branch is a path where the extremities are either the root or a leaf
or a branch node, and such that the other vertices are not branch nodes. The length
of a branch is the number of its vertices minus one (or equivalently, the number of
its edges). For n ≥ 0, let Tn be the set of ordered trees with n edges, and let T ⋆

n

be the set of ordered trees with n edges and having no branches of length one. Any
non-empty ordered tree T ∈ Tn can be decomposed in the form (L,R), where R
consists of the root of T connected with its rightmost subtree, and L is the root of T
connected with the remaining subtrees. In the following, L (resp. R) will be called
the left part (resp. right part) of T . Note that the rightmost subtree of T is obtained
from the right part R of T by deleting its root. Also, T is obtained from L and R
by merging the roots of L and R (see Figure 2). According to this decomposition,
we obtain directly the functional equation T (x) = 1 + xT (x)2, where T (x) is the
generating function for the number of ordered trees with respect to the number of
edges. As expected, the number of ordered trees with n edges is given by the n-th
Catalan number.

By convenience, we adopt the following notation for an ordered tree T . We use
the above decomposition T = (L,R), and in the case where L is only the root, we
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L R

Figure 2: Decomposition (L,R) of T , where R is the root of T connected with its
rightmost subtree, and L is the root of T connected with the remaining subtrees.

simplify this notation by writting T = eR′, where R′ is the unique subtree of T (e
refers to the edge between the root and the root of R′). For instance, e (resp. ee) is
the root connected to a leaf (resp. the root connected to a node in turn connected
to a leaf).

Now, we recursively define a map φ from Mr,≥
n to the set T ⋆

n+2 for n ≥ 0. Let
M be a Motzkin path in Mr,≥

n , and α,β ∈ Mr,≥:

(i) if M = ϵ, then φ(M) = ee,

(ii) if M = αF with φ(α) = (L,R), then φ(M) = (L, eR),

(iii) if M = UαD, then φ(M) = (φ(α), ee),

(iv) if M = UαDUβD with φ(α) = (L,R), then φ(M) = (L, ee(R,φ(β))).

An illustration of this map is given in Figure 3, and see Figure 5 for an example.

(i) ϵ −→

(ii)
α

−→
L R

with φ(α) = (L,R)

(iii)
α

−→
φ(α)

(iv)
α β

−→
L R φ(β)

with φ(α) = (L,R)

Figure 3: An illustration of the bijection φ.

Theorem 2.2. For n ≥ 0, the map φ is a bijection from Mr,≥
n to T ⋆

n+2 satisfying
r(M) = δ(φ(M)), where δ(T ) = 0 if T is a branch, and in other cases δ(T ) = 1 if
the right part in the decomposition of T is a branch, and δ(T ) = 2 otherwise.



INTEGERS: 19 (2019) 7

Proof. We proceed by induction on n. Obviously, for n = 1, we have φ(F ) = eee
and r(F ) = 0 = δ(eee). For k ≤ n, we assume that φ is a bijection from Mr,≥

k to
T ⋆
k+2 such that r(M) = δ(φ(M)) for any M ∈ Mr,≥

k and we prove the result for

n+1. Since Mr,≥
n+1 and T ⋆

n+3 have the same cardinality (see [20]), it suffices to prove

that if M,M ′ ∈ Mr,≥
n+1 with φ(M) = φ(M ′) then M = M ′. By a simple observation

of Figure 3, the image by φ of paths satisfying (iii) are the trees in T ⋆
n+2 with a

branch of length two as right part. Paths satisfying (ii) are sent on trees having
the right part that starts with a branch of length at least three. Path satisfying
(iv) are sent on trees having the right part that starts with a branch of length
two and that contains a branch node. So, φ(M) = φ(M ′) implies that M and M ′

belong to the same case (i), (ii), (iii), or (iv), and the recurrence hypothesis induces
M = M ′. Moreover, if M = Fn+1, then φ(M) = en+3 and r(M) = 0 = δ(φ(M)); if
M = UαD, then φ(M) = (φ(α), ee) and r(M) = 1 = δ(φ(M)); if M = UαDUβD
then φ(M) = (L, ee(R,φ(β))) and r(M) = 2 = δ(φ(M)) which completes the
proof.

The bijection φ establishes correspondences between several statistics on Motzkin
paths and ordered trees. For instance, the number of flats is translated into the
difference between the number of edges and two times the number of branches. The
number of up steps equals the number of branches minus one. The number of DU
equals the number of branch nodes. Table 2 summarizes the main correspondences.
We do not give formal proofs since they do not present any particular difficulties.

Corollary 2.3. The restriction of φ to Dr,≥
n establishes a one-to-one correspon-

dence with ordered trees having n + 1 branches in T ⋆
2n+2, which in turn are in

bijection with ordered trees with n+ 1 edges.

Corollary 2.4. The restriction of φ to Sr,≥
2n establishes a one-to-one correspondence

with ordered trees in T ⋆
2n+2 having all its branches of even length.

Corollary 2.5. The restriction of φ to Rr,≥
n establishes a one-to-one correspon-

dence with ordered trees in T ⋆
n+2 where the rightmost branch starting from the root

is of length 2.

Since many bijections are already known [4, 9, 15, 22] between ordered trees and
Dyck paths, it becomes easy to obtain constructive bijections between the two sets
Dn and Sr,≥

2n using Corollary 2.4.

3. Motzkin Paths Constrained by Height

In this section, we enumerate the set Mh,≥
n of Motzkin paths of length n ≥ 0 with

a first return decomposition satisfying the two conditions (C1) and (C2) where ⋄
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M ∈ Mr,≥
n φ(M) ∈ T ⋆

n+2

Number of returns δ(φ(M)) (see Theorem 2.2)

Number of up steps Number of branches minus one

Number of flats steps n+ 2− 2× Number of branches

Number of flats on the x-axis Length minus 2 of the rightmost
branch starting from root

Maximal length of a run of flats Maximal length of a branch minus 2

Number of maximal runs of flats of
even length

Number of branches of even length ≥
4

Number of maximal runs of flats of
odd length

Number of branches of odd length ≥ 3

Number of valleys DU Number of branch nodes

Number of peaks UF kD Number of branch nodes plus one

Number of up steps minus number of
valleys DU

Number of leaves minus one

Table 2: Statistic correspondences by the bijection φ

is the height statistic h. For k ≥ 0, let Ak(x) =
∑

n≥0 an,kx
n (resp. Bk(x) =∑

n≥0 bn,kx
n) be the generating function where the coefficient an,k (resp. bn,k) is

the number of Motzkin paths in Mh,≥
n having a maximal height equal to k (resp.

of at most k). So, we have Bk(x) =
k∑

i=0
Ai(x) and the generating function for the

set Mh,≥, namely Mh(x), is given by Mh(x) = lim
k→∞

Bk(x).

Any non empty Motzkin path M of height k ≥ 0 in Mh,≥
n , n ≥ 1, is either Fn,

or UαDβ, where α (resp. β) is a Motzkin path in Mh,≥ of height k − 1 (resp. of
height at most k). So we have

{
A0 (x) = B0 (x) =

1
1−x

Ak(x) = x2Ak−1(x) · Bk(x)
.

On the other hand, any Motzkin path of height k in Mh,≥ can be constructed
from a Dyck path of height k in Dh,≥ by possibly adding flat steps before down
steps, or at the end. Using the work in [3] on Dh,≥, we easily deduce Ak(x) =
1

1−xCk(x2/(1 − x)) and Bk(x) = 1
1−xDk(x2/(1 − x)), where Ck(x) (resp. Dk(x))

is the generating function for Dyck paths of height k (resp. at most k) in Dh,≥.
Therefore, we directly obtain Theorem 3.1 and Lemma 3.2 (the proofs are obtained
mutatis mutandis as in [3]).
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Theorem 3.1. We have A0 (x) = B0 (x) =
1

1−x , B1(x) =
1

1−x−x2 , and

Bk(x) =
1

1− x
·
k−1∏

i=0

(1− x2Ai(x))
−1 for k ≥ 1,

Mh(x) =
1

1− x
·

∞∏

i=0

(1− x2Ai(x))
−1,

Ak(x) =
x2k

(1− x)k+1
·
k−1∏

i=0

(1− x2Ai(x))
i−k .

k\n 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1

1 1 2 4 7 12 20 33 54 88

2 1 3 8 18 39 81 165

3 1 4 13 35 88

4 1 5 19

5 1
∑

1 2 3 6 11 22 43 87 176 362

Table 3: Number an,k of Motzkin paths of height k in Mh,≥
n , 1 ≤ n ≤ 10 and

0 ≤ k ≤ 5.

Lemma 3.2. For k ≥ 1, we have

Bk(x) =
1 + x2Bk−1(x)

1− x− x4Bk−1(x)
.

Note that by taking the limits when k converges to infinity, one gets x4Mh(x)2+

(x2 + x − 1)Mh(x) + 1 = 0, and we retreive that Mh(x) = 1
1−x · M

(
x2

1−x

)
. Now

we show how Bk(x), k ≥ 0, can be expressed as a closed form. Let us define the
function

f : u *→
1

1− x− x2 − x4u
.

For n ≥ 1, we denote by fn the function recursively defined by fn(u) = f
(
fn−1(u)

)

anchored with f 0 (u) = u. Lemma 3.2 induces that for any k ≥ 2, Bk(x) =
f(Bk−2(x)), which induces Theorem 3.3.
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Theorem 3.3. For k ≥ 1, we have

Bk(x) = f ⌊ k
2 ⌋ (Bk mod 2(x))

with the initial cases B0 (x) =
1

1−x and B1(x) =
1

1−x−x2 .

Table 3 presents the first values of an,k. Whenever k = 1, we have B1(x) =
1/(1 − x − x2) which is the generating function of the sequence of Fibonacci (see
A000045 in [20]). Note that, by taking limits in Theorem 3.3, we retrieve the
continued fraction given by P. Barry for the sequence A026418 in [20]:

Mh(x) =
1

1− x− x2 −
x4

1− x− x2 −
x4

1− x− x2 −
x4

. . .

.

Now, we conclude this section by giving a constructive bijection between Mh,≥
n

and the set T ⋆
n+2, n ≥ 0. Let M be a Motzkin path in Mh,≥

n and α,β ∈ Mh,≥, we
recursively define the map ψ as follows:

(i) if M = ϵ, then ψ(M) = ee,

(ii) if M = αF with ψ(α) = (L,R), then ψ(M) = (L, eR),

(iii) if M = αUF kD with k ≥ 0 and ψ(α) = (L,R), then ψ(M) = ((L, ekR), ee),

(iv) if M = αUUβDγD with ψ(αγ) = (L,R), then ψ(M) = (L, ee(R,ψ(β))).

An illustration of this map is given in Figure 4. Notice that the two first cases (i)
and (ii) are identical to those of φ. See Figure 5 for an example.

Theorem 3.4. The map ψ is a bijection from Mh,≥
n to T ⋆

n+2.

Proof. We proceed by induction on n. Obviously, for n = 1, we have ψ(F ) = eee.
For k ≤ n, we assume that ψ is a bijection from Mh,≥

k to T ⋆
k+2 and we prove the

result for n+1. Since Mh,≥
n+1 and T ⋆

n+3 have the same cardinality, it suffices to prove

that if M,M ′ ∈ Mh,≥
n+1 with ψ(M) = ψ(M ′) then M = M ′. By a simple observation

of Figure 4 and in a same way as for the proof of Theorem 2.2, the condition
ψ(M) = ψ(M ′) implies that M and M ′ belong to the same case (i), (ii), (iii), or
(iv). For the first two cases, it is straightforward that the recurrence hypothesis
induces M = M ′. For the case (iii), we have ψ(M) = ψ(M ′) = ((L, ekR), ee).
The first branch of R is necessarily of length two, otherwise this would mean that
the first branch of R is of length at least three, and thus α would have a flat step
at its end, which is impossible for M ∈ Mh,≥ satisfying (iii). Thus, k is entirely
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(i) ϵ −→

(ii)
α

−→
L R

with ψ(α) = (L,R)

(iii)
k flatsα

−→

k edges

L R
with ψ(α) = (L,R)

(iv)
α

β γ

−→
L R ψ(β)

with ψ(αγ) = (L,R)

Figure 4: An illustration of the bijection ψ.

determined by ψ(M) = ψ(M ′), and the recurrence hypothesis inducesM = M ′. For
the case (iv), we have M = αUUβDγD, M ′ = α′UUβ′Dγ′D and ψ(M) = ψ(M ′).
This implies that ψ(β) = ψ(β′), ψ(αγ) = ψ(α′γ′), and the recurrence hypothesis
gives β = β′ and αγ = α′γ′. Since h(α) ≥ h(β) + 2 ≥ h(γ) + 1, αγ has a unique
decomposition satisfying these inequalities. So we conclude α = α′ and γ = γ′.

The bijection ψ establishes correspondences between several statistics on Motzkin
paths and ordered trees. Table 4 summarizes the main correspondences. We do not
succeed to determine the statistic on T ⋆

n which is the image by ψ of h. Note
that using a straightforward proof by induction, the number of branch nodes of
ψ(M) equals the sum of ⌊k

2 ⌋ on all maximal runs Uk in M . As a byproduct and
using Corollary 3.5, Tables 2 and 4 induce several bijective correspondences between
statistics onMr,≥

n andMh,≥
n . See Figure 5 for an example of such a correspondence.

Corollary 3.5. The bijection ψ−1 ◦φ induces one-to-one correspondences between
Mr,≥

n and Mh,≥
n , Dr,≥

n and Dh,≥
n , Sr,≥

n and Sh,≥
n , Rr,≥

n and Rh,≥
n . These bijections

preserve the number of up steps, the number of flats, the number of flats on the
x-axis, the number of maximal runs of flats of even length, the maximal length of a
run of flats, and it transports the number of valleys DU into the sum of ⌊k

2 ⌋ on all
maximal runs Uk.

4. Going Further With 2-Motzkin Paths

In this part, we extend the previous study to 2-Motzkin paths. A 2-Motzkin path
is a Motzkin path where flat steps can be of two kinds: F for straight and K for
wavy. The number of 2-Motzkin paths with n steps is given by the (n + 1)-th
Catalan number 1

n+2

(2n+2
n+1

)
. We refer to [8, 12] for a constructive bijection between
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M ∈ Mh,≥
n T = ψ(M) ∈ T ⋆

n+2

Height Open question

Number of up steps Numbers of branches minus one

Number of flats n+ 2− 2× Number of branches

Number of flats on the x-axis Length minus 2 of the rightmost
branch starting from root

Number of maximal runs of flats of
even length

Number of branches of even length ≥
4

Number of maximal runs of flats of
odd length

Number of branches of odd length ≥ 3

Maximal length of a run of flats Maximal length of a branch minus 2
∑

Maximal Uk

⌊k
2 ⌋ Number of branch nodes

Number of up steps minus∑

Maximal Uk

⌊k
2 ⌋

Number of leaves minus one

Table 4: Statistic correspondences by the bijection ψ

2-Motzkin paths of length n and Dyck paths of semilength n + 1. For a statistic
s ∈ {r, h}, we define the set M̄s,≥

n of 2-Motzkin paths of length n satisfying the two
conditions (C1) and (C2) given in Introduction and we set M̄s,≥ =

⋃
n≥0 M̄s,≥

n . As
we did for Motzkin paths, a 2-Motzkin path in M̄s,≥ can be constructed from a
Dyck path in Ds,≥ by possibly adding flat steps (F or K) before any down step, or
at the end. So, the generating function M̄s(x) for the set M̄s,≥ is:

M̄s(x) =
1

1− 2x
·M

(
x2

1− 2x

)
.

The first coefficients of its Taylor expansion are 1, 2, 5, 12, 30, 76, 196, 512, 1353,
3610, 9713, 26324, and these numbers correspond to the first differences of Motzkin
numbers, which are also called generalized Ballot numbers (see A002026 in [20]).

4.1. Enumerative Results

Below, we state enumerative results for s ∈ {r, h}. We do not give the proofs since
it suffices to reread Sections 2 and 3 by replacing all fractions 1

1−x with 1
1−2x in all

functional equations in order to taking into account the two kinds of flats. Theorem
4.1 and Table 5 deal with the statistic of the number of returns, while Theorem 4.2
and Table 6 treat the case of the height.

Let A(x, y) =
∑

k,n≥0
an,kxnyk be the generating function where the coefficient
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∈ Mr,≥
19

ψ−1 ◦φ
∈ Mh,≥

19

φ ψ

∈ T ∗
21

Figure 5: Example of one-to-one correspondence between two Motzkin paths in
Mr,≥

19 and Mh,≥
19 passing by a tree in T ⋆

21.

an,k of xnyk is the number of 2-Motzkin paths with k returns in M̄r,≥
n .

Theorem 4.1. The generating function A(x, y) is given by

A(x, y) = A0 (x) +A1(x)y +A2(x)y
2

with

A0 (x) =
1

1− 2x
, A1(x) =

1− 2x− x2 −
√
1− 4x+ 2x2 + 4x3 − 3x4

2x2 (1− 2 x)
, and

A2(x) =

(
1− 2x− x2 −

√
1− 4x+ 2x2 + 4x3 − 3x4

)2

4x4 (1− 2 x)
.

k\n 1 2 3 4 5 6 7 8 9 10

0 2 4 8 16 32 64 128 256 512 1024

1 1 4 13 38 106 288 772 2056 5465

2 1 6 26 96 325 1042 3224
∑

2 5 12 30 76 196 512 1353 3610 9713

Table 5: Number an,k of 2-Motzkin paths with k returns in M̄r,≥
n , 1 ≤ n ≤ 10 and

0 ≤ k ≤ 2. For k ≥ 3 and n ≥ 1, we have an,k = 0.

For k ≥ 0, let Ak(x) =
∑
n≥0

an,kxn (resp. Bk(x) =
∑
n≥0

bn,kxn) be the generating

function where the coefficient an,k (resp. bn,k) is the number of 2-Motzkin paths of
height k (resp. at most k) in M̄h,≥

n .
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Theorem 4.2. We have A0 (x) = B0 (x) =
1

1−2x , B1(x) =
1

1−2x−x2 , and

Bk(x) =
1

1− 2x
·
k−1∏

i=0

(1 − x2Ai(x))
−1 for k ≥ 1,

M̄h(x) =
1

1− 2x
·

∞∏

i=0

(1 − x2Ai(x))
−1,

Ak(x) =
x2k

(1 − 2x)k+1
·
k−1∏

i=0

(1 − x2Ai(x))
i−k .

k\n 1 2 3 4 5 6 7 8 9 10

0 2 4 8 16 32 64 128 256 512 1024

1 1 4 13 38 105 280 729 1866 4717

2 1 6 26 96 324 1032 3159

3 1 8 43 190 748

4 1 10 64

5 1
∑

2 5 12 30 76 196 512 1353 3610 9713

Table 6: Number an,k of Dyck paths of height k in M̄h,≥
n , 1 ≤ n ≤ 10 and 0 ≤ k ≤ 5.

Note that B1(x) is the generating function of the sequence of Pell numbers
(A000129 in [20]) which count the left factors of Grand Schröder paths.

Lemma 4.3. For k ≥ 1, we have

Bk(x) =
1 + x2Bk−1(x)

1− 2x− x4Bk−1(x)
.

Note that by taking the limits when k converges to infinity, one gets x4M̄h(x)2+
(x2 + 2x− 1)M̄h(x) + 1 = 0, and we retrieve that M̄h(x) = 1

1−2x ·M( x2

1−2x ). Now,
we show how Bk(x) can be expressed as a closed form. Let us define the function

g : u *→
1

1− 2x− x2 − x4u
.

Lemma 4.3 induces that for any k ≥ 2, Bk(x) = g(Bk−2(x)), which induces Theorem
4.4.
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Theorem 4.4. For k ≥ 1, we have

Bk(x) = g⌊
k
2 ⌋ (Bk mod 2(x))

with the initial cases B0 (x) =
1

1−x and B1(x) =
1

1−2x−x2 .

By taking limits in Theorem 4.4, we obtain the continued fraction for the sequence
A002026 in [20]:

M̄h(x) =
1

1− 2x− x2 −
x4

1− 2x− x2 −
x4

1− 2x− x2 −
x4

. . .

.

4.2. Constructive Bijection

In this part, we construct a bijection between M̄s,≥
n , s ∈ {r, h}, and the subset

Bn+2 of Tn+2 consisting of ordered trees with n + 2 edges where the root has two
children, and where every node has at most two children. In order to do this, we
firstly extend the previous bijections φ and ψ respectively on the sets M̄r,≥

n and
M̄h,≥

n by setting φ(αK) = ψ(αK) = (L, ēR) whenever φ(α) = ψ(α) = (L,R),
and where e is a straight edge and ē is a wavy edge. So, these two maps establish
one-to-one correspondences between M̄s,≥

n , s ∈ {r, h}, and the set T ⋆⋆
n+2 of ordered

trees with n+ 2 edges having no branches of length one, and such that any branch
is constituted of edges of two kinds (straight and wavy) except for its two last edges
which must be straight. Secondly, we recursively define a map χ between T ⋆⋆

n+2 and
the subset Bn+2.

For n ≥ 2, let T be an ordered tree in T ⋆⋆
n and α,β ∈ T ⋆⋆ =

⋃
n≥2

T ⋆⋆
n (which

induces that α and β are non-empty). Let T ⋆⋆(1) be the set of ordered trees in T ⋆⋆

where the root has only one child, and let T ⋆⋆(2) = T ⋆⋆\T ⋆⋆(1).

We define χ as follows:

In the case where T ∈ T ⋆⋆(1):

(i) if T = ee, then χ(T ) = (e, e),

(ii) if T = eeα with α ∈ T ⋆⋆(2), then χ(T ) = (eχ(α), e),

(iii) if T = eα with α ∈ T ⋆⋆(1), then χ(T ) = (L, ek+1) for χ(α) = (L, ek), k ≥ 1,

(iv) if T = ēα with α ∈ T ⋆⋆(1), then χ(T ) = (e(L, ek−1), e) for χ(α) = (L, ek), k ≥ 1.

In the case where T ∈ T ⋆⋆(2):
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(v) if T = (α,β) with α ∈ T ⋆⋆, β ∈ T ⋆⋆(1), then χ(T ) = (L, ekχ(α)) for χ(β) =
(L, ek), k ≥ 1.

An illustration of this map is given in Figure 6.

(i) −→

(ii)
α

−→ χ(α) with α ∈ T ⋆⋆(2)

(iii)

e

α
−→

k
edges

L
with α ∈ T ⋆⋆(1), χ(α) = (L, ek)

(iv)

ē

α
−→

k −
1 edges

L
with α ∈ T ⋆⋆(1), χ(α) = (L, ek)

(v)
α β

−→

k
edges

L χ(α) with α ∈ T ⋆⋆,β ∈ T ⋆⋆(1), χ(β) = (L, ek)

Figure 6: An illustration of the bijection χ.

It is easy to observe the following facts.

Fact 1. The image by χ of T ∈ T ⋆⋆(1) does not have any branch node in its right
part, that is, its right branch is of the form ek for k ≥ 1.

Fact 2. The image of T ∈ T ⋆⋆(2) has at least one branch node in its right part.

Fact 3. The image of a tree satisfying (iii) has a branch of length at least two as
right part of the root, while the image of a tree satisfying (i), (ii) or (iv) has a
branch of length one.

Fact 4. The image of a tree satisfying (ii) has a left subtree where the root has two
subtrees such that the rightmost contains at least one branch node.

Fact 5. The image of a tree satisfying (iv) has a left subtree where either the root
has two subtrees such that the rightmost is a branch (whenever k ≥ 2), or the root
has only one subtree (whenever k = 1).

Theorem 4.5. For n ≥ 2, the map χ is a bijection from T ⋆⋆
n to Bn.
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Proof. Considering Facts 1-5, the equality χ(T ) = χ(T ′) implies that T and T ′

belong to the same case (i), (ii), (iii), (iv) or (v). The injectivity is obtained
by a simple induction. Now, it suffices to check that Bn and T ⋆⋆

n have the same
cardinality. Let E(x) be the generating function for Bn, n ≥ 2, and E1(x) the
generating function for the set B1 =

⋃
n≥2 B1

n of trees in B having a branch as right
part. We set B2 = B\B1 and E2(x) = E(x) − E1(x). A tree T in B1 consists of a
branch of length at least one for its right part, and a unary-binary tree connected
to the root for its left subtree. So, we have E1(x) =

x2

1−xM(x), where M(x) is the
Motzkin generating function for the unary-binary ordered trees. A tree T in B2

consists of a right part which is a branch of length at least one connected to a tree
in B, and a unary-binary tree connected to the root as left subtree. So, we deduce
E2(x) =

x2

1−xE(x)M(x). A simple calculation of E(x) proves that Bn and T ⋆⋆
n have

the same cardinality for n ≥ 2, which completes the proof.

Remark 4.6. The set B is clearly in bijection with the square of the set of unary-
binary trees (i.e., ordered trees where any node, including the root, has at most two
children). Then the generating function for B is given by x2M(x)2, where M(x) is
the generating function for the Motzkin numbers. So, the bijection ψ◦χ establishes
a bijective proof of the (apparently new) equality

M(x)2 =
1

1− 2x
·M

(
x2

1− 2x

)
.

Corollary 4.7. The restriction of χ to T ⋆
n establishes a one-to-one correspondence

with ordered trees in Bn such that any left node has zero or two children, and any
left leaf has a right sibling having at most one child.

Proof. The restriction of χ to T ⋆
n is defined using cases (i), (ii), (iii) and (v).

Let T ∈ T ⋆
n and T ′ = χ(T ). By a simple induction, we observe that any left

node of T ′ has zero or two children, and any left leaf has a right sibling having
at most one child. Now, it suffices to prove that these trees are counted by the
sequence A026418 in [20] (as for T ⋆

n ). Let E(x) be the generating function for these
trees. Since such a tree is of one of the forms (e, e), (eS, e), (eS, eS′) and (L, eR)
whenever S = (L,R) and S′ are also such trees, then E(x) satisfies the functional
equation: E(x) = x2 + x2E(x) + xE(x) + x2E(x)2. A simple calculation provides
E(x) = x2M(x2/(1− x))/(1 − x) which achieves the proof.

Corollary 4.8. The restriction of χ to the subset of T ⋆
2n consisting of ordered trees

having n branches establishes a one-to-one correspondence with binary ordered trees
in B2n such that any node has zero or two children, and any left leaf has a right leaf
as sibling.

Proof. The proof is obtained as for the previous corollary without considering the
case (iii).
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5. Conclusion and Future Works

In Corollary 3.5, we obtain a constructive bijection between Dr,≥
n and Dh,≥

n . Un-
fortunately, this bijection does not transport simply the two statistics r and h. Is
there another more natural bijection that behaves well with these statistics? On the
other hand, we have seen that Schröder paths in Sr,≥

2n and Sh,≥
2n are enumerated by

the n-th Catalan numbers. Is it possible to obtain direct bijections between these
sets and the set of Dyck paths of semilength n, by not passing by a set of ordered
trees? More generally, can we obtain bijective correspondences between these sets
and other combinatorial classes such as permutations?

It would be interesting to study several parameters or statistics on the sets Ms,≥
n

and Ds,≥
n for s ∈ {r, h}. For instance, the distribution of a given pattern is a subject

widely studied these last years (in particular the avoidance of a pattern). Also, we
could enumerate the restricted sets of paths having a non-decreasing height sequence
(see [1, 6, 7]).

Can one develop algorithm for uniform random generation of an element of
Ms,≥

n ? Can one develop an efficient algorithm for the exhaustive generation of
these objects?
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