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Abstract. In the Stanley lattice defined on Dyck paths of size n, cover relations are obtained
by replacing a valley DU by a peak UD. We investigate a greedy version of this lattice, first
introduced by Chenevière, where cover relations replace a factor DUkD by UkD2. By relating
this poset to another poset recently defined by Nadeau and Tewari, we prove that this still
yields a lattice, which we call the ascent lattice Dn.

We then count intervals in Dn. Their generating function is found to be algebraic of de-
gree 3. The proof is based on a recursive decomposition of intervals involving two catalytic
parameters. The solution of the corresponding functional equation is inspired by recent work
on the enumeration of walks confined to a quadrant.

We also consider the order induced in Dmn on m-Dyck paths, that is, paths in which all
ascent lengths are multiples of m, and on mirrored m-Dyck paths, in which all descent lengths
are multiples of m. The first poset Dm,n is still a lattice for any m, while the second poset
D
′
m,n is only a join semilattice when m > 1. In both cases, the enumeration of intervals is still

described by an equation in two catalytic variables. Interesting connections arise with the
sylvester congruence of Hivert, Novelli and Thibon, and again with walks confined to a quad-
rant. We combine the latter connection with probabilistic results to give asymptotic estimates
of the number of intervals in both Dm,n and D

′
m,n. Their form implies that the generating

functions of intervals are no longer algebraic, nor even D-finite, when m > 1.

1. Introduction and main results
In recent years, several orders have been studied on the set of Dyck paths of fixed size n,

with a special attention to the number of their intervals. The most natural of these posets is
the so-called Stanley lattice (or Dyck lattice [30]), where a Dyck path is smaller than another
one if it lies (weakly) below it [5]. Its cover relations are obtained by replacing a valley by
a peak; in symbols, DU → UD, where U and D stand for up and down steps, respectively.
All other Dyck orders that have been studied are included in this one, in the sense that
if a path is less than another one, it lies below it. Let us cite the Kreweras lattice [46, 5],
the Tamari lattice [40, 44], its greedy version due to Dermenjian [32], the alt-Tamari lat-
tices of Chenevière [29], or the pyramid lattice introduced by three of the authors of the
present paper [2]. Figure 1 presents the subposet-inclusion structure of these posets. In-
teresting connections arise between intervals in these posets and various families of planar
maps [5, 21, 18, 26, 37, 35, 36, 38], and, at least conjecturally, with certain quotient rings of
polynomials [4, 17, 42].

In this paper we consider yet another order — in fact, a lattice — on the set of Dyck paths
of size n. This poset was first considered by Chenevière in his thesis [30]. The enumeration
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Figure 1. Subposet-inclusion structure of some orders on Dyck paths.

of its intervals reveals connections with 2-dimensional walks confined to a cone, and, on a
more algebraic side, with classes of the sylvester congruence on words [43, 49].

<·
Figure 2. A cover relation between two Dyck paths of size 6.

The cover relations in this lattice, called the ascent lattice and denoted by Dn, are easy to
describe. They consist in swapping a down step with the ascent that follows it, where we call
ascent a (non-empty) maximal sequence of up steps; see Figure 2. In symbols, DU kD −→
U kDD for any k ≥ 1. Roughly speaking, one applies at once as many cover relations of the
Stanley lattice as possible, using always the same down step. This explains why this poset
is called greedy Dyck poset in [30, Def. 7.2.5]. Figure 3 shows the whole lattice for n = 4.
After establishing some properties of the lattice Dn, we exhibit a recursive construction of
its intervals, which can be described by a generating tree with two labels. This tree also
describes a family of lattice walks confined to the quadrant, in which an infinite family of
steps is allowed. This construction translates, for the associated generating function, into a
linear equation with two additional (or: catalytic) variables. An important literature has been
devoted, in the past 20 years, to the solution of similar-looking equations, corresponding to
quadrant walks in which only finitely many steps are allowed [8, 10, 20, 33, 51]. We solve
our equation by adapting the invariant approach of [8], and conclude that the generating
function of intervals in the ascent lattices Dn is an algebraic (cubic) series. The asymptotic
behaviour of the corresponding numbers, in µnn−7/2, is far less common in enumerative
combinatorics than the tree behaviour in µnn−3/2, or the (rooted) map behaviour in µnn−5/2.
This puts ascent intervals in the same universality class as unrooted planar maps [58, 53],
or discrete versions of the Brownian motion confined to a wedge of angle 2π/5 [31, 8].

Theorem 1.1. Let g(n) be the number of intervals in the ascent lattice Dn. The associated gener-
ating function G :=

∑
n≥1 g(n)tn is

G = Z(1− 2Z + 2Z3),

where Z is the only formal power series in t satisfying Z = t(1 + Z)(1 + 2Z)2. In particular, the
series G is algebraic of degree 3 over Q(t).
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Figure 3. The Hasse diagram of D4 = D1,4 = D
′
1,4.

As n tends to infinity, the number of intervals in Dn is equivalent to

κµnn−7/2,

with

µ =
11 + 5

√
5

2
, κ =

3
8

√
275 + 123

√
5

10π
.

Inspired by earlier papers on other Dyck lattices [21, 18, 4, 17], we also consider the
family of m-Dyck paths of size n, in which the n up steps now have height m instead of 1
(Figure 4, left). They can also be seen as Dyck paths of size mn in which the length of each
ascent is a multiple of m. They form an upper ideal, and an interval, in Dmn, and thus a
new lattice that we denote by Dm,n (Figure 5, left). Its cover relations are still described by

Figure 4. From left to right, a 2-Dyck path of size 3 (element of D2,3), and a
mirrored 2-Dyck path of size 3 (element of D′2,3).
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Figure 5. On the left, the Hasse diagram of D2,3, and on the right, the Hasse
diagram of D′2,3.

DU kD −→ U kDD, where now U , in boldface, stands for a large up step of height m. We ex-
tend to this lattice the construction of intervals found for m = 1, and obtain again a bijection
with certain quadrant walks with infinitely many allowed steps. However, in contrast with
other lattices defined on m-Dyck paths [21, 18], as soon as m ≥ 2 the associated generating
function stops being algebraic, or even D-finite (i.e., solution of a linear differential equa-
tion with polynomial coefficients). We prove this by determining the asymptotic behaviour
of the number of intervals, which, due to deep number theoretic results [11], rules out the
possibility of D-finiteness.

Proposition 1.2. Let us fix m ≥ 1. The number gm(n) of intervals in the ascent lattice Dm,n
satisfies, as n tends to infinity,

gm(n) ∼ κµnnα ,

for some positive contant κ, where

µ =
m
√
m2 + 4 +m2 + 2

2
·
2 +

√
m2 + 4
m

m
and

α = −1−π/ arccos(−c) with c = −

√
m2 + 2−

√
m2 + 4

2m2 + 6
.
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For m = 1 we have α = −7/2, but for m > 1 the exponent α is irrational. This implies that for
m > 1 the generating function of intervals in Dm,n is not D-finite.

Finally, we also consider the class of mirrored m-Dyck paths of size n: now, the up steps
have height 1 and the n down steps have height m (Figure 4, right). Alternatively, these
paths can be seen as Dyck paths of size mn in which the length of each descent is a multiple
of m. For m > 1 the order induced by Dmn on these paths is no longer a lattice, and in
particular it has several minimal elements. But it is still a join semilattice, which we denote
by D

′
m,n (Figure 5, right). Its cover relations are still described by DU kD −→ U kDD, where

D, in boldface, stands for a large down step. Working with these mirrored m-Dyck paths
is less standard than working with m-Dyck paths, but turns out to be rewarding: when
investigating the number of intervals in D

′
m,n, we found them in the On-line Encyclopedia

of Integer Sequences [55], as the number of sylvester classes of m-parking functions [43, 49].
We first establish a bijection between these classes and intervals in D

′
m,n. Then, we describe a

recursive construction of intervals of D′m,n, which, when m = 1, is not the same as the earlier
one. It gives again a bijection with quadrant walks with infinitely many allowed steps, and
a linear equation in two catalytic variables for the generating function. This time we also
have an alternative interpretation in terms of quadrant walks with finitely many (weighted)
allowed steps. We determine the asymptotic behaviour of the number of intervals, which
again rules out the possibility of D-finiteness for m ≥ 2.

Proposition 1.3. Let us fix m ≥ 1. The number g ′m(n) of intervals in the ascent poset D
′
m,n

satisfies, as n tends to infinity,
g ′m(n) ∼ κµnnα ,

for some positive constant κ, where

µ =
(
2m+

√
1 + 4m2

)1 +
√

1 + 4m2

2m

2m

and

α = −1−π/ arccos(−c) with c = −

√
1 + 2m2 −m

√
1 + 4m2

2(3m2 + 1)
.

For m = 1 we have α = −7/2, but for m > 1 the exponent α is irrational. This implies that for
m > 1 the generating function of ascent intervals in D

′
m,n is not D-finite.

Outline of the paper. We begin in Section 2 with various definitions, in particular of the
ascent posets Dm,n and D

′
m,n. We give a characterization of the ascent order that reveals a

connection with another poset defined on nonincreasing sequences, recently introduced by
Nadeau and Tewari [48]. We rely on their results to conclude that Dm,n is a lattice, and D

′
m,n a

join semilattice. In Section 3, we show how to transform bijectively intervals of the Nadeau-
Tewari poset into words on the alphabet Z that avoid two patterns, and are representatives
for classes of the sylvester congruence introduced by Hivert et al. [43]. In particular, we ex-
hibit sylvester classes that are in bijection with intervals of Dm,n and D

′
m,n. In Section 4, we

describe recursive constructions of these intervals, and convert them into functional equa-
tions for the associated generating functions. To write these equations, one needs to record
two additional (or: catalytic) variables. In Section 5 we solve the two equations obtained
for m = 1, and establish Theorem 1.1 and refinements of it. Section 6 is devoted to the
asymptotic estimates of Theorems 1.2 and 1.3. We conclude with a few remarks.
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2. Ascent posets
2.1. Definitions

We begin with precise definitions of the objects and notions discussed more informally in
the introduction.

Dyck paths. Let us first recall that a Dyck path P is a 2-dimensional path starting at the
origin (0,0), consisting of up steps U = (1,1) and down steps D = (1,−1), that ends on the
x-axis and never goes strictly below the x-axis. The size of P is the number n of up steps. We
denote by Dn the set of such paths. An ascent of a path P is a maximal, non-empty sequence
of consecutive up steps. A descent is defined similarly using down steps. A factor of P is a
non-empty sequence of consecutive steps. A peak is a factor UD, while a valley is a factor
DU . The ascent composition of a Dyck path P is the composition c(P ) = (c1, . . . , ck), where the
part ci > 0 is the length of the ith ascent of P . Clearly, the ci ’s sum to n, so that c(P ) is a
composition of the integer n if P ∈ Dn.

For m ≥ 1, we call m-Dyck path of size n any path of Dmn in which all ascent lengths are
multiples of m, and denote the corresponding set by Dm,n. Analogously, we call mirrored
m-Dyck path of size n any path of Dmn in which all descent lengths are multiples of m, and
denote the corresponding set by D′m,n. We sometimes consider m-Dyck paths of size n as
sequences of large up steps U = (m,m) and (unit) down steps D, and analogously for mirrored
m-Dyck paths, which have large down steps D = (m,−m) and unit up steps. The number of
m-Dyck paths of size n is the Fuss-Catalan number (see A355262 in the OEIS [55]):

Cm(n) =
1

mn+ 1

(
(m+ 1)n

n

)
. (1)

Orders on Dyck paths. There exists on Dn a classical order, called the Stanley order (or
lattice, in fact), for which P is less than or equal to Q if it lies (weakly) below Q. By this,
we mean that for any ℓ, the prefix of P of length ℓ contains at most as many up steps as the
prefix of length ℓ of Q. A path Q covers a path P in this order if and only if Q is obtained by
replacing a valley DU of P into a peak UD.

In this paper we consider a greedy version of this order, which we call the ascent order. It
is described by its cover relations: we say that Q covers P (denoted P <·Q) if there exists in P
a factor DU kD such that Q is obtained from P by replacing this factor by U kDD. Observe
that in this case P lies below Q. In particular, this relation is irreflexive and anti-symmetric.
Its transitive closure is thus an order relation on Dn, denoted ≤, and one easily checks that
the cover relations of this order are indeed those described above. We denote by Dn the
corresponding poset. Since Dm,n and D′m,n are subsets of Dmn, we can consider the orders
induced by ≤ on these subsets. We denote by Dm,n and D

′
m,n the corresponding posets.

Formal power series. For a ring R, we denote by R[t] (resp. R[[t]]) the ring of polynomials
(resp. formal power series) in t with coefficients in R. If R is a field, then R(t) stands for the
field of rational functions in t. This notation is generalized to several variables. For instance,
in Section 4 we consider the generating function Gm(t;x,y) of intervals in the ascent lattices
Dm,n, n ≥ 1, where t records the size (the number n of up steps), and x (resp. y) the length
of the final descent of the smaller (resp. larger) path; this series belongs to Q[x,y][[t]]. We
often omit in our notation the dependency in t of our series, writing for instance Gm(x,y)
instead of Gm(t;x,y).

https://oeis.org/A355262
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2.2. A characterisation of the ascent order

Let us first recall that a composition c refines another composition c′ if we can write c =
(c1,1, c1,2, . . . , c1,j1 , . . . , ci,1, ci,2, . . . , ci,ji ) and c′ = (c′1, . . . , c

′
i) where c′k = ck,1 + ck,2 + · · · + ck,jk , for

1 ≤ k ≤ i. For instance, the paths of Figure 2 have ascent compositions c(P ) = (2,2,2) and
c(Q) = (2,4), and we observe that c(P ) refines c(Q). Note that refinement is an order relation
on compositions of n, for each integer n. It is isomorphic to the Boolean lattice on (n − 1)
elements. The cover relations are obtained by merging two consecutive parts.

Proposition 2.1. In the ascent poset Dn, we have P ≤ Q if and only if P lies (weakly) below Q
and the ascent composition c(P ) refines c(Q).

Graphically, the second condition means that for every descent of Q, there is a descent of P lying
on the same line (of slope −1).

Proof. Let us first prove that if P ≤ Q in Dn, the other two conditions hold. By transitivity,
it suffices to prove them if P <· Q. By definition, this means that one obtains Q from P by
replacing a factor DU kD by U kDD. This shows at once that Q is above P . Moreover, c(Q) is
either c(P ), or is obtained from c(P ) by merging two consecutive parts. It follows that c(P ) is
a refinement of c(Q).

Conversely, let us take a pair (P ,Q) in Dn such that P lies below Q and c(P ) refines c(Q).
We will argue by induction on the area lying between P and Q. If this area is zero, P = Q
and there is nothing to prove. Otherwise, let us write P = P1P2 and Q = Q1Q2 where P1 = Q1
is the longest common prefix of P and Q. Then P2 = DP3 and Q2 = UQ3, because P is
below Q (Figure 6). Note that P3 contains at least one U step. Let c = (c1, . . . , ck) be the ascent
composition of P , and say that the first ascent of P3 is the jth ascent of P , of length cj . If

cj

cjcj−1

dj

dj−1

P1 = Q1 P3, Q3

P3, Q3P1 = Q1

P

Q

Q

P

3 = cj ≤ dj = 4

2 + 3 = cj−1 + cj ≤ dj−1 = 6

Figure 6. Applying the transformation DU kD → U kDD at the first valley
of P that is not a valley of Q. Top: P1 ends with D. Bottom: P1 ends with U .
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P1 = Q1 ends with a D step (Figure 6, top), then the first up step of Q2 is the start of the
jth ascent of Q, which has length dj if d = (d1, . . . ,dℓ) is the ascent composition of Q. Since c
refines d and the first (j − 1) parts of c and d coincide, we have cj ≤ dj . If P1 = Q1 ends with
a U step (Figure 6, bottom), then this step belongs to the (j − 1)th ascents of P and Q, which
have lengths cj−1 in P and dj−1 in Q. Moreover, dj−1 > cj−1 because this ascent of Q also
includes the first step of Q2 (but definitely not the first step of P2, which is D). In this case
the first (j −2) parts of c and d coincide, and we have dj−1 ≥ cj−1 +cj since c refines d. In both
cases, let P ′ be obtained by applying the cover relation at the first valley of P that follows P1.
The above observations imply that P ′ lies below Q, and that its composition refines c(Q): in
the first case, c(P ′) = c(P ), and in the second case, either c(P ′) = c(P ) or c(P ′) is obtained by
merging the parts cj−1 and cj of c(P ). Also, the area between P ′ and Q is less than the area
between P and Q. By the induction hypothesis, we thus have P ′ ≤Q. But P ′ covers P , hence
P ≤Q.

The second statement of the proposition is a simple observation. □

It will be worth keeping in mind the following result, established in the second part of
the above proof.

Corollary 2.2. Let P ⪇ Q. Applying the cover relation at the first valley of P that is not a valley
of Q gives a path P ′ that covers P and satisfies P ′ ≤Q.

Remark 2.3. The characterization of Proposition 2.1 implies that if Q covers P in the Tamari
lattice, then Q is larger than P in the ascent lattice. This inclusion appears in Figure 1.

2.3. The posetsDm,n andD
′
m,n

We now fix m ≥ 1. We consider the ascent order onDmn, and the induced orders on the set
Dm,n of m-Dyck paths of size n, on the first hand, and on the set D′m,n of mirrored m-Dyck
paths of size n, on the other hand. Recall that we sometimes consider these paths as having
large up (resp. down) steps, of height m, and that these large steps are denoted by U and D,
respectively.

Proposition 2.4. The poset Dm,n is the interval of Dmn with minimum element (UmD)n and
maximum element UmnDmn. Its cover relations are still given by the transformation DU ℓD →
U ℓDD (where ℓ = mk is necessarily a multiple of m), or equivalently by DU kD→ U kDD.

The poset D′m,n has maximum element UmnDmn, but several minimal elements if m ≥ 2. Their
number is the Fuss-Catalan number Cm−1(n) (see (1)). The cover relations are still given by the
transformation DU kD→U kDD.

Proof. Recall that the cover relations in Dmn either merge two consecutive parts of the ascent
composition, or leave it unchanged. Hence, if P ≤ Q in Dmn and P ∈ Dm,n ⊂ Dmn, then
Q ∈ Dm,n as well. Thus Dm,n forms an upper ideal in Dmn. Moreover, Proposition 2.1 implies
that the m-Dyck path (UmD)n is smaller than (or equal to) any other m-Dyck path. This
proves the first statement. The second then follows, because Q covers P in Dm,n if and only
if Q covers P in Dmn.

Let us now consider the subset D′m,n of Dmn. It contains UmnDmn, so this path remains
the (unique) maximal element in D

′
m,n. Let us skip for the moment the results on minimal

elements, and focus on cover relations. If a path Q is obtained from another path P ∈ D′m,n by
a transformation DU kD → U kDD, then Q ∈ D′m,n and P ≤ Q by Proposition 2.1. Moreover,
any mirrored m-Dyck path that lies above P and below Q is obtained from P by replacing the
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same factor DU kD by U ℓDU k−ℓD. By Proposition 2.1, it is larger than or equal to P in Dmn
only if ℓ = 0 or ℓ = k. Hence Q covers P . Conversely, if Q covers P in D

′
m,n, then in particular

P ≤ Q in Dmn, and Proposition 2.1 implies that P lies below Q and c(P ) refines c(Q). We
then apply m times the construction of Corollary 2.2: that is, we perform, in the first valley
of P that is not a valley of Q, a transformation DU kD→U kDD that gives a path P ′ lying in
[P ,Q]. Since P ′ , P and P ′ still belongs to D′m,n, the fact that Q covers P in D

′
m,n implies that

P ′ = Q. Hence Q is indeed obtained via the claimed cover relation.
Now that we have described the cover relations in D

′
m,n, let us finally return to its minimal

elements. We assume that m ≥ 2. If Q covers some path P , then Q contains a factor DD.
Conversely, if Q = Q1UDDQ2, then Q covers P := Q1DUDQ2. Thus the minimal elements
of D′m,n are those that contain no factor DD. We claim that these paths are in bijection with
mirrored (m − 1)-Dyck paths of the same size. The bijection simply consists in replacing
every factor UD = UDm by Dm−1. This concludes the proof. □

2.4. Lattice properties

The characterization of the ascent order in Proposition 2.1 reveals a connection with an-
other order, defined on nonincreasing sequences of integers, recently introduced by Nadeau
and Tewari [48]. This connection, already observed by Chenevière [30, p. 147], will imply
our main structural result.

Definition 2.5. [48, Def. 5.4] Let n ≥ 1, and u = (u1, . . . ,un), v = (v1, . . . , vn) be two nonincreasing
sequences of integers. Then u is smaller than or equal to v in the Nadeau-Tewari poset Pn, denoted
u ⊴ v, if u is smaller than or equal to v componentwise, and every descent of v is a descent of u.
In symbols:

• ui ≤ vi for all i,
• if vi > vi+1 then ui > ui+1.

Proposition 2.6. [48, Prop. 5.5] The poset Pn is a lattice, called (here) the NT lattice.

In particular, the join of two sequences u and v is the (componentwise) smallest se-
quence w whose descent set is contained in the intersection of the descents sets of u and v.
For instance, if u = (4,4,2,2) and v = (4,4,3,1) then w = (4,4,3,3).

We can encode an m-Dyck path of Dm,n by a nonincreasing sequence (u1, . . . ,un) of inte-
gers, where ui is the number of D steps that occur after the ith large up step U . For instance,
the encoding of the leftmost path of Figure 4 is (u1,u2,u3) = (6,5,3). The encoding sends
bijectively Dm,n on the set of nonincreasing sequences u of length n such that for all i,

m(n− i + 1) ≤ ui ≤mn. (2)

Analogously, we encode a mirrored m-Dyck path of D′m,n by the nonincreasing sequence
(u1, . . . ,umn) such that ui is the number of D steps that occur after the ith up step U . For
instance, the encoding of the rightmost path of Figure 4 is (u1, . . . ,u6) = (3,3,3,2,1,1). This
encoding sends bijectively D′m,n on the set of nonincreasing sequences u of length mn such
that for all i,

n− i − 1
m
≤ ui ≤ n. (3)

Proposition 2.7. Let m,n ≥ 1. The poset Dm,n is a lattice, isomorphic to the order induced by the
Nadeau-Tewari order on sequences of Pn satisfying (2).
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The poset D′m,n is a join-semilattice, isomorphic to order induced by the Nadeau-Tewari order
on sequences of Pmn satisfying (3).

Proof. The descriptions of Dm,n and D
′
m,n as induced posets of Pn and Pmn come directly

from the characterization of the ascent order given in Proposition 2.1, and the definitions of
Dm,n and D

′
m,n as subposets of Dmn. Let us now address the lattice properties.

In Pn, any sequence u satisfying (2) satisfies, for the NT order:

umin := (mn,m(n− 1), . . . ,m) ⊴ u ⊴ umax := (mn, . . . ,mn).

This is because umin has a descent at each place, while umax has no descent at all. Conversely,
any sequence u such that umin ⊴ u ⊴ umax satisfies (2). This means that our encoding sends
Dm,n on the interval [umin,umax] of Pn, and thus on a lattice.

Analogously, any sequence u of Pmn satisfying (3) satisfies, for the NT order:

u ⊴ umax := (n, . . . ,n),

because there is no descent in umax. Moreover, any v such that u ⊴ v ⊴ umax also satisfies (3).
Hence our encoding sends D

′
m,n on a union of intervals with maximal element umax, and

thus on a join semilattice. □

Examples. Let us first take m = 1 and n = 4, and construct the join in Dn of the paths
P = UUDDUUDD and Q = UUDUDDUD, encoded by u = (4,4,2,2) and v = (4,4,3,1).
The join of u and v has already be seen to be w = (4,4,3,3), and thus the join of P and Q is
UUDUUDDD.

Next let us take m = 2 and n = 3, and construct the join in D
′
m,n of P = UUDUUUDUD

and Q = UUUUDDUUD. The encodings of P and Q are, respectively, u = (3,3,2,2,2,1) and
v = (3,3,3,3,1,1), whose join in Pn is w = (3,3,3,3,3,3). Hence the join of P and Q in D

′
m,n is

U6D3. □

3. Intervals in the Nadeau-Tewari poset and classes of the
sylvester congruence

In this section, we exhibit a bijection between (some) intervals of the Nadeau-Tewari lat-
tices Pn and (some) words on the alphabet N∗ = {1,2, . . .} that avoid the patterns aba and acb
(precise definitions will be given below). These words are known to encode classes of the
sylvester congruence on words, introduced by Hivert et al. [43]. We then specialize our bi-
jection to intervals of Dm,n and D

′
m,n. In particular, intervals of D′m,n are sent bijectively to

sylvester classes of m-parking functions, considered in [49].
Let us begin with some definitions. Given a word w = w1 · · ·wn on the alphabet N∗, we

denote its length n by |w|. We denote by {w} the set of letters occurring in w, and by {{w}}
the multiset of letters of w. We define NInc(w) (resp. NDec(w)) as the word obtained by
reordering the letters of w in nonincreasing (resp. nondecreasing) order. For two words w
and w′ of the same length, we say that w ≤ w′ if wi ≤ w′i for all i. We define Low(w) as
the only nonincreasing word of length n that has the same left-to-right minima as w, at the
same positions. In other words, Low(w) is the largest nonincreasing word (for the above
componentwise order) that is smaller than or equal to w. For instance, if u = 6 8 7 4 5 2 3 1 9
then Low(u) = 6 6 6 4 4 2 2 1 1.

The sylvester congruence on words is generated by the commutation relations

ac · · ·b ≡ ca · · ·b, a ≤ b < c.
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It is known that the words w = w1 · · ·wn avoiding the patterns aba and acb form a set of repre-
sentatives of sylvester classes [49, Sec. 2.7]: every class contains such a word, and two distinct
words of this type are never congruent. By pattern avoidance, we mean that we cannot find
1 ≤ i < j < k ≤ n such that either wi = wk < wj or wi < wk < wj . This congruence arose in
connection with binary search trees [43], and the name sylvester refers to the forest, silva in
Latin, rather than to the mathematician James Joseph Sylvester.

Lemma 3.1. Let w avoid the patterns aba and acb. Then w can be uniquely reconstructed from
the words w(1) = NInc(w) and w(2) = Low(w).

Proof. By construction, the left-to-right minima of w have the same positions and values as
those of w(2). Hence, let us write

w = w
(2)
i1
z1w

(2)
i2
z2 · · ·w

(2)
ik
zk = wi1z1wi2z2 · · ·wikzk ,

where 1 = i1 < i2 · · · < ik are the indices of the left-to-right minima of w, and |zj | = ij+1 − ij − 1
for all j. Starting from w(2) and w(1), we thus need to decide how to arrange the letters of

{{w(1)}} \ {w(2)
i1
, . . . ,w

(2)
ij
} in the words zj . Obviously, all letters of zj must be greater than or

equal to w
(2)
ij

.
We claim that each zj is nondecreasing: indeed, any descent of zj would give rise to a

pattern aba or acb, with first letter a = w
(2)
ij

at position ij , and the other two in zj . So it suffices

to determine, inductively on j, which letters of {{w(1)}} \ {{w(2)
i1
z1 · · ·zj−1w

(2)
ij
}} go into zj . We

claim that they are the |zj | smallest, among those that are larger than or equal to w
(2)
ij

. Indeed,
imagine that we leave out one of them, say m. Then the final letter M of zj is larger than m,

and m occurs later in w. But then the subword w
(2)
ij
Mm of w has shape aba or acb. □

Example 3.2. Take w = 3 2 2 2 2 5 1 1 1 5, which avoids aba and acb. Then w(1) := NInc(w) =
5 5 3 2 2 2 2 1 1 1 and w(2) := Low(w) = 3 2 2 2 2 2 1 1 1 1. To reconstruct w from these two
words, we first collect the left-to-right minima of w(2) and leave them in place:

w = 3 2 _ _ _ _1_ _ _.

The multiset of letters of w(1) that need to fill the gaps is {{5,5,2,2,2,1,1}}. We fill the first
gap z1, in nondecreasing order, with the 4 smallest of these letters that equal at least 2,
namely 2,2,2 and 5:

w = 3 2 2 2 2 5 1_ _ _.
We finally fill the second gap z2 with the remaining letters, 1,1 and 5:

w = 3 2 2 2 2 5 1 1 1 5.

We have recovered w.

Remark 3.3. This construction is reminiscent of, but distinct from, the bijection between
permutations avoiding the pattern abc and those avoiding acb found in [54, Prop. 19].

We now consider positive nonincreasing sequences u = (u1, . . . ,un) of the Nadeau-Tewari
poset Pn (Definition 2.5), with n fixed. These sequences can be encoded bijectively by nonin-
creasing words w on the alphabet {1, . . . ,n} that contain at least one occurrence of the letter 1
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(Figure 7): the word w = W (u) has ui − ui+1 occurrences of the letter n+ 1 − i, for 1 ≤ i ≤ n,
where we take un+1 = 0. Graphically, if we represent u by a path with East steps at heights
u1, . . . ,un,un+1 = 0, joined by South steps, then wi is the number of East steps after the ith
South step. It can also be seen as the abscissa of the ith South step, if abscissas are numbered
from right to left (Figure 7). Note that W (u) has length u1. We call it the vertical encoding
of u. Note also that for two sequences u and v in Pn such that u1 = v1, we have ui ≤ vi for
all i if and only if W (v) ≤ W (u) componentwise (so the order is reversed). Of course the
sequence u and the word w play essentially symmetric roles. We choose to represent u by a
sequence and w by a word to keep them distinct. We denote byWn the set of words on the
alphabet {1, . . . ,n} that contain at least one occurrence of the letter 1. Nonincreasing words
ofWn are in bijection with positive sequences of Pn.

012345

0

1

2

4

5

6

3

Figure 7. The positive sequence u = (6,6,5,3,3) ∈ P5 is encoded by the word
w = 4 3 3 1 1 1 ∈W5, of length u1 = 6.

Proposition 3.4. Fix n ≥ 1 and let w ∈ Wn. Then NInc(w) and Low(w) are nonincreasing words
of the same length inWn. Let u (resp. v) be the positive sequence of Pn such that W (u) = NInc(w)
(resp. W (v) = Low(w)). Then u1 = v1 = |w| and u ⊴ v in the Nadeau-Tewari poset Pn. Define
Φn(w) to be the interval [u,v].

The restriction of Φn to words of Wn avoiding the patterns aba and acb is a bijection between
these words and intervals [u,v] of positive words such that u1 = v1 in the Nadeau-Tewari poset Pn.

Proof. Let us first observe that, for two positive sequences u and v in Pn such that u1 = v1,
the condition u ⊴ v translates in terms of the words w(1) := W (u) and w(2) := W (v) as follows:
w(2) ≤ w(1) (componentwise), and the set {w(2)} of letters of w(2) is included in {w(1)}.

Now let w = w1 · · ·wM be a word of length M in Wn, and take w(1) = NInc(w) and w(2) =

Low(w). Write w(k) = w
(k)
1 · · ·w

(k)
M for k = 1,2. Given that the letters of w(2) are the values of the

left-to-right minima of w, while w(1) is just a reordering of w, we have {w(2)} ⊂ {w(1)}. Let us
now prove that w(2) ≤ w(1) componentwise (note that for the moment we do not assume that
w avoids any pattern). For any letter a ∈N, we have, by definition of w(1) = NInc(w):

w
(1)
i ≥ a⇔ ♯{j : wj ≥ a} ≥ i.

Hence w
(2)
i ≤ w

(1)
i if and only if at least i letters of w are larger than or equal to w

(2)
i . Assume

that m ≤ i < m′, where m and m′ are the positions of two consecutive left-to-right minima
of w. Then w

(2)
i = wm, and by definition of w(2) = Low(w), the letters w1, . . . ,wm′−1 are larger

than or equal to wm. Since there are m′−1 of them, and i ≤m′−1, this proves that w(2)
i ≤ w

(1)
i .
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We conclude that the positive sequences u and v of Pn given by W (u) = w(1) and W (v) = w(2)

form an interval for the NT order. They also satisfy u1 = v1 = M. These properties hold in
particular when w avoids the two forbidden patterns. Moreover, the map Φn is injective on
those words, by Lemma 3.1.

Let us now prove surjectivity. Let u ⊴ v in Pn, with u and v positive and u1 = v1 := M. Let
w(1) = W (u) and w(2) = W (v). As already observed, u ⊴ v means that w(2) ≤ w(1) (componen-
twise) and {w(2)} ⊂ {w(1)}. The proof of Lemma 3.1 tells us how to reconstruct a word w that
avoids the two patterns and satisfies Φ(w) = (u,v) — if such a word exists! So let us try to ap-

ply this construction to w(1) and w(2): we keep the left-to-right minima of w(2), denoted w
(2)
ij

,

in place, and fill the gaps zj with the remaining letters of w(1). Let us first explain that the
construction succeeds, that is, produces a word w. We will then explain why w does not con-
tain the forbidden patterns. The only thing that could go wrong in the construction of w is
that we could run out of letters when filling, with letters of {{w(1)}} \ {{w(2)

i1
z1 · · ·zj−1w

(2)
ij
}}, the

gap following the jth left-to-right minimum of w. This only happens if the number of letters

of w(1) that are larger than or equal to w
(2)
ij

is less than ij+1 −1 (with ij+1 = M + 1 if w(2)
ij

is the

rightmost left-to-right minimum). However, the number of such letters in w(2) is precisely
ij+1 −1, and w(2) ≤ w(1) componentwise: hence there are at least ij+1 −1 letters larger than or

equal to w
(2)
ij

in w(1), and one is never stuck in the construction of w. Finally, w avoids aba

and acb: indeed, if there was one of these patterns in w, there would be one where the first a
is occurs at a left-to-right minimum, hence a = w

(2)
ij

: but the construction has been designed
to guarantee that there is no wk > wℓ ≥ a with ij < k < ℓ. Hence the map Φn is surjective, and
the proposition is proved. □

Example 3.5. Take n = 6, and choose w = 3 2 2 2 2 5 1 1 1 5 as in Example 3.2. Then
w(1) := NInc(w) = 5 5 3 2 2 2 2 1 1 1 and w(2) := Low(w) = 3 2 2 2 2 2 1 1 1 1. The pos-
itive nonincreasing sequences u and v of Pn such that W (u) = w(1) and W (v) = w(2) are
u = (10,10,8,8,7,3) and v = (10,10,10,10,9,4), and they form an interval in Pn (Figure 8).

It follows from the above proposition that, given a positive sequence u(0) of Pn, the map
Ψn := Φ−1

n sends bijectively intervals [u,v] of Pn such that u1 = v1 = u
(0)
1 and ui ≥ u

(0)
i for

all i ≤ n onto

• words w of Wn avoiding aba and acb and satisfying NInc(w) ≤W (u(0)), component-
wise,
• or equivalently sylvester classes of words w ofWn such that NInc(w) ≤W (u(0)).

Returning to Proposition 2.7, we can use this to exhibit families of words (or sylvester
classes) in bijection with intervals of Dm,n and D

′
m,n.

Corollary 3.6. Upon encoding m-Dyck paths and mirrored m-Dyck paths by nonincreasing se-
quences (see Section 2.4), the maps Ψn and Ψmn induce respectively bijections between

• intervals of Dm,n and sylvester classes of words w ofWn of length mn such that NInc(w) ≤
nm(n− 1)m · · ·1m, where im represents a sequence of m copies of i;
• intervals of D′m,n and sylvester classes of words w ofWmn of length n such that NInc(w) ≤

((n− 1)m+ 1) · · · (2m+ 1)(m+ 1)1.
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Figure 8. The sequences u = (10,10,8,8,7,3) and v = (10,10,10,10,9,4) form
an interval in P6 such that u1 = v1. Their vertical encodings are w(1) =
5 5 3 2 2 2 2 1 1 1 and w(2) = 3 2 2 2 2 2 1 1 1 1, respectively, and the as-
sociated pattern avoiding word is w = 3 2 2 2 2 5 1 1 1 5 (Example 3.5).

Note that the two statements coincide when m = 1. The second one explains why we found
the sequences (g ′m(n))n>0 counting intervals of D′m,n, for 1 ≤m ≤ 5, in the OEIS: they appear
at the very end of [49] in Table 21, as counting sylvester classes of m-parking functions
(of size n). These functions are defined in [49, Sec. 6.1] as positive words w of length n
such that NDec(w) ≤ 1(m + 1) · · · ((n − 1)m + 1), which is equivalent to saying that NInc(w) ≤
((n − 1)m + 1) · · · (m + 1)1 as above. The sylvester classes involved in the first part of the
corollary do not seem to have been considered so far.

Example 3.7. Let us take m = 1 and n = 4, and the interval [P ,Q] of D4 given by P =
UDUUDDUD and Q = UUUDDUDD. We encode P and Q by nonincreasing sequences
u and v as described in Section 2.4, with u = (4,3,3,1) and v = (4,4,4,2). Note that u ⊴ v
for the NT order, as used in the proof of Proposition 2.7. The vertical encodings of u and v
are W (u) = 4 2 2 1 and W (v) = 2 2 1 1. The unique word w avoiding aba and acb such that
NInc = W (u) and Low(w) = W (v) is w = 2 2 1 4 and is the canonical representative of the
sylvester class associated with [P ,Q].

4. Recursive construction of intervals inDm,n andD
′
m,n

In this section, we describe recursive constructions of the intervals of the posets Dm,n and
D
′
m,n, and convert them into functional equations for the associated generating functions.

4.1. Intervals inDm,n

Lemma 4.1. Let m,n ≥ 1, and let [P ′ ,Q′] be an interval of Dm,n. Delete in P ′ and Q′ the final
(large) peak UDm, to obtain two paths P and Q of Dm,n−1. Then they form an interval, that is,
P ≤Q.

Conversely, start from an interval [P ,Q] in Dm,n−1. Let a ≤ b be the lengths of the final descents
of P and Q, respectively. Inserting final large peaks UDm in the final descents of P and Q, starting
at respective heights a′ ∈ ⟦0, a⟧ and b′ ∈ ⟦0,b⟧, yields an interval [P ′ ,Q′] if and only if a′ ≤ b′ and
b′ is maximal as soon as a′ is maximal. That is, a′ = a implies b′ = b.
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Proof. The first part directly follows from Proposition 2.1: deleting the final large peak pre-
serves the relation “lying below”, and subtracts m from the final part of the ascent composi-
tion (parts of size 0 are then discarded), thus preserving refinement.

Conversely, inserting new large peaks in the final descents of P and Q, at heights a′ and b′

respectively, preserves the relation “lying below” if and only if a′ ≤ b′. This operation adds
to c(P ) a new part equal to m if a′ < a, and adds m to the final part of c(P ) if a′ = a. An
analogous statement holds for Q. Since we need c(P ′) to refine c(Q′), these observations
imply the final condition of the lemma. □

Let Gm(t;x,y) be the generating function of intervals [P ,Q] in the ascent lattices Dm,n,
counted by the size n > 0 (variable t), the length of the final descent of P (variable x) and of Q
(variable y). Then Gm(t;x,y) are formal power series in t whose coefficients are polynomials
in x and y. For m = 1,2, they start as follows:

G1(t;x,y) = xyt + xy (xy + y + 1) t2 + xy
(
x2y2 + 2xy2 + 2xy + 2y2 + 3y + 3

)
t3 +O(t4),

G2(t;x,y) = x2y2t+x2y2
(
x2y2 + xy2 + xy + y2 + y + 1

)
t2 +x2y2

(
x4y4 + 2x3y4 + 2x3y3 + 3x2y4

+4x2y3 + 3xy4 + 4x2y2 + 5xy3 + 3y4 + 6xy2 + 5y3 + 6xy + 6y2 + 6y + 6
)
t3 +O(t4).

Clearly, the exponent of y is at least equal to the exponent of x in each monomial of Gm(t;x,y),
and in addition all terms in Gm are multiples of txmym. So we define a new series Qm(t;x,y)
by

Gm(t;x,y) = txmymQm(t;xy,y), or equivalently Qm(t;x,y) = Gm(t;x/y,y)/(txm). (4)

Proposition 4.2. For m ≥ 1, the generating function Gm(t;x,y) ≡ Gm(x,y) is characterized by the
following functional equation:

Gm(x,y) = txmym + txmymGm(x,y) + txm ym+1 Gm(x,y)−Gm(1, y)
(x − 1)(y − 1)

− txmym
Gm(xy,1)−Gm(1,1)

(y − 1)(xy − 1)
.

Equivalently, Qm(t;x,y) ≡Qm(x,y) is characterized by

Qm(x,y) = 1 + txmQm(x,y) + ty2 xmQm(x,y)− ymQm(y,y)
(x − y) (y − 1)

− t x
mQm(x,1)−Qm(1,1)

(x − 1)(y − 1)
.

Proof. We construct intervals of Dm,n recursively on the size n, starting from the only interval
of size 1, namely [UDm,UDm], and inserting a final peak as in Lemma 4.1. We use the
notation of this lemma. The rule that describes the final descent lengths of paths P ′ ≤ Q′

obtained from [P ,Q] ∈Dm,n−1 in terms of the final descent lengths a and b of P and Q is

(a,b)→
{

(m+ a′ ,m+ b′), for 0 ≤ a′ < a and a′ ≤ b′ ≤ b,
(m+ a,m+ b). (5)

In other words, intervals of Dm,n are in bijection with nodes at height (n − 1) in the gener-
ating tree having root (m,m) and the above rewriting rule (see for instance [60, 13] for the
hopefully intuitive notion of generating trees). In terms of generating functions, if we write
Gm(x,y) =

∑
0≤a≤bGm,a,bx

ayb, so that Gm,a,b is the series (in t) counting intervals with final
descent lengths a and b, the above construction gives:

Gm(x,y) = txmym + t
∑

0≤a≤b
Gm,a,b

xm+aym+b +
a−1∑
a′=0

b∑
b′=a′

xm+a′ym+b′
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= txmym + txmymGm(x,y) + txmym
∑

0≤a≤b
Gm,a,b

a−1∑
a′=0

xa
′
·
yb+1 − ya′

y − 1

= txmym + txmymGm(x,y) + txmym
∑

0≤a≤b
Gm,a,b

xa − 1
x − 1

yb+1

y − 1

− txmym
∑

0≤a≤b
Gm,a,b

xaya − 1
(xy − 1)(y − 1)

,

which is the announced equation for Gm. It is straightfoward to convert it into an equation
for Qm, using (4). □

The rewriting rule (5) also describes the construction of certain lattice walks confined to
the first quadrant of the plane, which are thus in bijection with ascent intervals. This will
be combined in Section 6 to general probabilistic results on quadrant walks to obtain the
asymptotic result of Proposition 1.2.

Corollary 4.3. Let m,n ≥ 1. There is a bijection between intervals in Dm,n and walks in the
quarter plane N

2 that start from (0,0) and consist of n − 1 steps taken from the following subset
of Z2:

Sm = {(m,0)} ∪
{
(δx,δy) : δx < m and δx + δy ≤m

}
.

More precisely, a walk ending at (i, j) corresponds to an interval [P ,Q] where P and Q have final
descent lengths m+ i and m+ i + j, respectively.

This also yields a bijection between intervals in Dm,n and quadrant walks of length n starting
and ending at (0,0), still taking their steps in Sm. We call such walks excursions.

Proof. There are two (essentially equivalent) ways of proving this result.
The first one starts from the rewriting rule (5) and rewrites the label (a,b) as (m+i,m+i+j),

so that the conditions m ≤ a ≤ b become i, j ≥ 0. The transformed tree has root (0,0) and
rewriting rule

(i, j)→
{

(k,ℓ), for 0 ≤ k < m+ i and 0 ≤ ℓ ≤m+ i + j − k,
(m+ i, j). (6)

In other words, from the point (i, j) in the nonnegative quadrant N2, we can move to another
point (k,ℓ) of the quadrant by appending a step (δx,δy) = (k − i, ℓ − j) satisfying

(δx,δy) = (m,0) or
(
δx < m and δx + δy ≤m

)
, (7)

which is indeed the collection of steps Sm. The second statement follows by adding to a walk
of length n− 1 ending at (i, j) the step (−i,−j), which is indeed in Sm.

The second way to prove the corollary is to start from the description of the quadrant walk
and to recover the equation on Qm obtained in Proposition 4.2. Since handling quadrant
walks with infinitely many steps is uncommon in the quadrant walks literature, let us do
this. Let us denote by Q(t;x,y) ≡Q(x,y) =

∑
i,j≥0Qi,jx

iyj the generating function of quadrant
walks with steps in Sm (starting from (0,0)), counted by the length (i.e., the number of steps;
variable t), and the coordinates of the endpoint (variables x and y). We construct walks
step-by-step, using the description (6) of the endpoint rather than the description (7) of the
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steps:

Q(x,y) = 1 + txmQ(x,y) + t
∑
i,j≥0

Qi,j

m+i−1∑
k=0

m+i+j−k∑
ℓ=0

xkyℓ


= 1 + txmQ(x,y) + t

∑
i,j≥0

Qi,j

m+i−1∑
k=0

xk ·
ym+i+j−k+1 − 1

y − 1


= 1 + txmQ(x,y) +

t
y − 1

∑
i,j≥0

Qi,j

(
ym+i+j+1 (x/y)m+i − 1

x/y − 1
− xm+i − 1

x − 1

)
,

which gives the equation obtained in Proposition 4.2 for the series Qm. □

4.2. Intervals inD
′
m,n

Let us now turn our attention to mirrored m-Dyck paths. First, observe that the final
descent Dh of such a path is not necessarily preceded by at least m up steps, so there is not
always a final (large) peak. It makes sense to consider instead the first (large) peak UmD,
which always exists. We will use a new parameter on intervals: when P ≤Q, with associated
ascent compositions c(P ) = (c1, c2, . . .) and c(Q) = (d1,d2, . . .), we know that c(P ) refines c(Q).
We define r(P ,Q) to be the unique integer r such that c1 + · · ·+ cr = d1.

Lemma 4.4. Let m,n ≥ 1, and let [P ′ ,Q′] be an interval of D′m,n. Delete in P ′ and Q′ the first
(large) peak UmD, to obtain two paths P and Q of D′m,n−1. Then they form an interval, that is,
P ≤Q.

Conversely, start from an interval [P ,Q] in D
′
m,n−1. Let c(P ) = (c1, c2, . . .) and c(Q) = (d1,d2, . . .)

be the corresponding ascent compositions. The length of the first ascent in P (resp. Q) is thus c1
(resp. d1). Let r = r(P ,Q). Inserting a first large peak UmD in the first ascents of P and Q, starting
at heights a′ ∈ ⟦0, c1⟧ and b′ ∈ ⟦0,d1⟧ respectively, yields an interval if and only if

• either b′ is one of c1, c1 + c2, . . . , c1 + · · ·+ cr = d1 and a′ is any element of ⟦0, c1⟧,
• or 0 ≤ a′ = b′ < c1.

Proof. The first part follows from Proposition 2.1: when deleting the first peaks, one just
subtracts m from the first part in the ascent compositions of P ′ and Q′.

Conversely, inserting new large peaks in the first ascents of P and Q at heights a′ and b′

respectively, preserves the relation “lying below” if and only if a′ ≤ b′. We want to choose a′

and b′ so that the resulting paths P ′ and Q′ are such that c(P ′) refines c(Q′). Recall that this
means that every descent of Q′ lies on the same line (of slope −1) as a descent of P ′. This
gives the conditions stated in the lemma; see Figure 9. □

Let G′m(t;x,y) be the generating function of intervals [P ,Q] in the ascent lattice D
′
m,n,

counted by the size n (variable t), the length of the first ascent of P (variable x) and the
statistic r(P ,Q) (variable y). Then G′m(t;x,y) is a formal power series in t whose coefficients
are polynomials in x and y. For m = 1,2, they start as follows:

G′1(t;x,y) = xyt + xy (x+ y + 1) t2 + xy
(
x2 + 2xy + y2 + 3x+ 3y + 3

)
t3

+ xy
(
x3 + 3x2y + 3xy2 + y3 + 6x2 + 10xy + 6y2 + 13x+ 13y + 13

)
t4 +O

(
t5

)
,
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First down step of Q

c1 = 3

c1 + c2 = 5

. . .

c1 + · · ·+ cr = 9

4-th down step of P

Figure 9. An example where r(P ,Q) = 4 for an interval [P ,Q] in D
′
2,n−1. A

first peak can be inserted in Q at heights b′ = 0,1, . . . , c1, c1 + c2, . . . , c1 + · · ·+ cr .
If b′ < c1, then the peak inserted in P must start at height b′ as well.

G′2(t;x,y) = x2yt + x2y
(
x2 + xy + x+ y + 1

)
t2+

+ x2y
(
x4 + 2x3y + x2y2 + 3x3 + 4x2y + 2xy2 + 5x2 + 5xy + 2y2 + 5x+ 5y + 5

)
t3 +O(t4).

Note that G′1(t;x,y) does not coincide with G1(t;x,y), except at the point x = y = 1, since
these series record different statistics. We will see below that G′1(t;x,y) is symmetric in x
and y, a result that calls for a direct combinatorial explanation.

Since all monomials are multiples of txmy, we introduce the series Q′m(t;x,y) defined by

G′m(t;x,y) = txmyQ′m(t;x,y). (8)

Proposition 4.5. The generating function G′m(t;x,y) ≡ G′m(x,y) is characterized by the following
functional equation:

G′m(x,y) = txmy+txmy
G′m(x,y)−G′m(x,1)

y − 1
+txm y2 G′m(x,y)−G′m(1, y)

(x − 1)(y − 1)
−txmy G′m(x,1)−G′m(1,1)

(x − 1)(y − 1)
.

Equivalently, Q′m(t;x,y) ≡Q′m(x,y) is characterized by

Q′m(x,y) = 1 + txm
yQ′m(x,y)−Q′m(x,1)

y − 1
+ ty2 xmQ′m(x,y)−Q′m(1, y)

(x − 1)(y − 1)
− t x

mQ′m(x,1)−Q′m(1,1)
(x − 1)(y − 1)

.

Remark 4.6. When m = 1, the equation for G′1 can be rewritten as

G′1(x,y) = txy + txy
(x+ y − 1)G′1(x,y)− xG′1(x,1)− yG′1(1, y) +G(1,1)

(x − 1)(y − 1)
.

It is symmetric in x and y, and characterizes G′1(x,y): we conclude that this series is sym-
metric in x and y. Since the equation reflects a (symmetric) recursive construction of in-
tervals, it can be used to define a recursive involution on ascent intervals that exchanges
the length of the first ascent of the bottom path and the parameter r(·, ·). See Section 7 for
details. Note that another symmetry property was discovered in Tamari intervals [18], and
explained in [27, 50].

Proof of Proposition 4.5. We construct intervals of D
′
m,n recursively in the size n, starting

from the only interval of size 1, namely [UmD,UmD], and inserting peaks as in Lemma 4.4.
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We use the notation of this lemma. Let us examine the value of the parameter r(P ′ ,Q′), for
paths P ′ ≤Q′ obtained from [P ,Q] ∈D′m,n−1:

• if b′ = c1 + · · ·+ cs, then r(P ′ ,Q′) = s if a′ = c1, and r(P ′ ,Q′) = s+ 1 otherwise,
• if b′ = a′ < c1, then r(P ′ ,Q′) = 1.

Hence, if we record for each interval [P ,Q] the pair (c1(P ), r(P ,Q)), we obtain a generating
tree with root labelled (m,1) and rewriting rule

(a, r)→


(m+ a,s), for 1 ≤ s ≤ r,
(m+ a′ , s+ 1), for 0 ≤ a′ < a and 1 ≤ s ≤ r,
(m+ a′ ,1), for 0 ≤ a′ < a.

(9)

Note that the last two lines can be merged into a single one, by allowing s to be 0.
In terms of generating functions, if we write G′m(x,y) =

∑
a,rG

′
m,a,rx

ayr , the above construc-
tion gives:

G′m(x,y) = txmy + t
∑
a,r

G′m,a,r

xm+a
r∑

s=1

ys +
a−1∑
a′=0

r∑
s=0

xm+a′ys+1


= txmy + txm

∑
a,r

G′m,a,r

(
xa ·

yr+1 − y
y − 1

+
xa − 1
x − 1

·
yr+2 − y
y − 1

)
,

which gives the first equation of Proposition 4.5. It is straightfoward to convert it into an
equation for Q′m, using (8). □

Corollary 4.7. Let m,n ≥ 1. There is a bijection between intervals in D
′
m,n and walks in the

quarter plane N2 that start from (0,0) and consist of n− 1 steps taken from

S ′m =
(
{m} × L−∞,0⟧

)
∪

(
L−∞,m− 1⟧× L−∞,1⟧

)
,

where L−∞, a⟧ := Z∩ (−∞, a]. Moreover, a walk ending at (i, j) corresponds to an interval [P ,Q]
where P has a first ascent of length m+ i and r(P ,Q) = 1 + j.

This also yields a bijection between intervals in D
′
m,n and quadrant walks of length n starting

and ending at (0,0), still taking their steps in S ′m.

Proof. Let us start from the rewriting rule (9) and rewrite the label (a, r) as (m+i,1+j), so that
the conditions m ≤ a,1 ≤ r become i, j ≥ 0. The transformed tree has root (0,0) and rewriting
rule

(i, j)→
{

(m+ i, ℓ) for 0 ≤ ℓ ≤ j
(k,ℓ) for 0 ≤ k < i +m and 0 ≤ ℓ ≤ 1 + j.

(10)

In other words, from the point (i, j) in the quadrant, we can move to another point (k,ℓ) of
the quadrant by appending a step (δx,δy) = (k − i, ℓ − j) satisfying(

δx = m and δy ≤ 0
)

or
(
δx < m and δy ≤ 1

)
, (11)

which is indeed the collection of steps S ′m. The second statement follows by adding to a walk
of length n− 1 ending at (i, j) the step (−i,−j), which is indeed in S ′m. □

There is an alternative description of the series G′m(1,1) in terms of quadrant walks in-
volving finitely many weighted steps, or equivalently steps from a finite multiset.
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Corollary 4.8. Let m,n ≥ 1. The number of intervals in the poset D′m,n is the number of quadrant
walks of lenth n− 1 starting and ending at the origin, for which the multiset Sm of allowed steps
has generating polynomial

Sm(u,v) :=
∑

(a,b)∈Sm

uavb =
(1 +u)m(1 + v)(1 +u + v)

uv
.

Proof. Let us introduce a new trivariate series Rm(t;u,v) ≡ Rm(u,v) defined by Rm(u,v) :=
Q′m(1 + u,1 + v). Observe in particular that Rm(0,0) = Q′m(1,1) = G′m(1,1)/t is the generating
function of intervals in the posets D′m,n, where t records the size of the paths, minus 1. The
equation of Proposition 4.5 gives:

Rm(u,v) = 1+t
(1 +u)m(1 + v)(1 +u + v)

uv
Rm(u,v)−t (1 + v)2

uv
Rm(0,v)−t (1 +u)m+1

uv
Rm(u,0)+t

R(0,0)
uv

.

This equation precisely describes (see [9]) the generating function of quadrant walks with
steps in Sm starting from the origin, where t records the length (number of steps), and (u,v)
the final coordinates. □

In particular, for m = 1 the multiset of allowed steps has generating polynomial

S1(u,v) = 3 +
1
uv

+
2
u

+
2
v

+
u
v

+
v
u

+u + v,

and, up to the (harmless) constant term 3, coincides with the steps of an already solved
quadrant model [8, Sec. A.7]. In the next section, we take advantage of this earlier result to
prove Theorem 1.1. We also explain how the principles of [8] can be used to solve, instead
of the equation obtained for R1(u,v) (or equivalently, for G′1(x,y)), the equation obtained in
Proposition 4.2 for G1(x,y).

5. Exact enumeration of intervals inDn

In this section we focus on the case m = 1, and drop all indices m in our generating func-
tions, writing for instance G(x,y) instead of G1(x,y). Our aim is to prove, and actually refine,
Theorem 1.1 that gives the size generating function of intervals in the lattices Dn. We can
choose between two starting points to address this question. Either we start from the equa-
tion for Q(x,y) = G(x/y,y)/(tx) in Proposition 4.2:

Q(x,y) = 1 + txQ(x,y) + ty2 xQ(x,y)− yQ(y,y)
(x − y) (y − 1)

− t xQ
(x,1)−Q(1,1)

(x − 1)(y − 1)
, (12)

or from the equation for Q′(x,y) = G′(x,y)/(txy) in Proposition 4.5:

Q′(x,y) = 1 + tx
yQ′(x,y)−Q′(x,1)

y − 1
+ ty2 xQ′(x,y)−Q′(1, y)

(x − 1)(y − 1)
− t xQ

′(x,1)−Q′(1,1)
(x − 1)(y − 1)

.

Recall from Corollary 4.8 that up to the change of variables (x,y) 7→ (1 + x,1 + y), the latter
equation is equivalent to

R(x,y) = 1 + t
(1 + x)(1 + y)(1 + x+ y)

xy
R(x,y)− t

(1 + y)2

xy
R(0, y)− t (1 + x)2

xy
R(x,0) + t

R(0,0)
xy

. (13)

Again, note that this equation is symmetric in x and y, and hence the same holds for the
series R(x,y) and G′(x,y).
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In all three cases (and in fact also for m > 1) we have a linear equation, relating a main
unknown series F(x,y) to some specializations involving at most one of the two catalytic
variables x and y: for instance F(x,1), F(1,1), F(y,y) or F(x,0). Historically, the first (non-
linear) equations of this type appeared in the seventies in Tutte’s work on the enumera-
tion of properly coloured planar maps [57, 56]. He devoted ten years and ten papers to
the solution of just one of them (see [59] and references therein). More recently, similar
equations appeared in more contexts, like the enumeration of certain classes of permuta-
tions [13, 24], or of lattice walks confined to a quadrant [8, 10, 11, 20, 33, 51], or of some
classes of maps [1, 6, 7, 23]. The solutions of these equations are not systematically algebraic
(nor even D-finite as will be proved here for m > 1), but our series Q, Q′ and R will be proved
to be algebraic. Several, often ad hoc approaches have been designed to prove algebraicity
for such equations [10, 14, 15, 13, 12, 20, 47]. The most systematic one, based on a certain
notion of invariants, is based on ideas developed by Tutte in his enumeration of coloured
maps. In particular, the invariant approach has already solved in [8] an equation that is ex-
tremely close to the above equation defining R(x,y), and we will rely on this to solve (13) and
determine G′(x,y) (Proposition 5.1). Next, we will see that an invariant approach can also be
applied to determine Q(x,y) (Proposition 5.2), even if Eq. (12), due to the terms Q(y,y) and
the denominator (x − y), looks rather different from (13).

5.1. The first ascent of P , and the statistics r(P ,Q)

Proposition 5.1. The series G′(t;x,y) that counts intervals [P ,Q] in the lattices Dn by the size,
the height of the first ascent of P and the statistics r(P ,Q) defined above Lemma 4.4 is symmetric
in x and y. It is algebraic of degree 12 over Q(t,x,y), and can be expressed as follows.

Let Z be the only series in t with constant term 0 satisfying

Z = t(1 +Z)(1 + 2Z)2.

Then the size generating function of intervals in the ascent lattices Dn is the following cubic series:

G′(1,1) = Z(1− 2Z + 2Z3). (14)

More generally the bivariate series G′(x,1) is

G′(x,1) = G′(1,x) =
C0(x)−C1(x)

√
∆(x)

2x3(1− x)Z2 ,

where

∆(x) = (1 +Z)2 (1 + 2Z)2 − 2Z (Z + 1)
(
2Z2 + 4Z + 1

)
x+Z2x2,

C1(x) =
(
(1 + 2Z)2 − 2Z2x −Z x2

)(
(1 +Z) (1 + 2Z)− 2(1 +Z)2 x+ x2

)
,

and

C0(x) = (1 +Z)2 (1 + 2Z)4 − (1 +Z) (1 + 2Z)2
(
8Z3 + 16Z2 + 9Z + 2

)
x −Z (1 +Z) (1 + 2Z)2 x4 +Z2x5

+ (1 +Z)
(
18Z5 + 46Z4 + 48Z3 + 25Z2 + 7Z + 1

)
x2 −Z

(
2Z5 − 6Z3 − 7Z2 − 3Z − 1

)
x3.

An algebraic expression of G′(x,y) in terms of x,y and Z can then be obtained from the functional
equation of Proposition 4.5.

Remarks
1. The above expression of G′(1,1) coincides with the value of

∑
n g(n)tn given in Theo-

rem 1.1. Deriving from this the asymptotic behaviour of the numbers g(n) is a routine task,
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following the principles of singularity analysis [39, Sec. VII.7]. The series Z is found to have
a unique dominant singularity, of the square root type, located at tc := 1/µ where µ is given
in Theorem 1.1. One needs to expand Z around tc up to the order of (1 − µt)5/2 to obtain
from (14) the singular behaviour of G′(1,1), in the form

G′(1,1) = c0 + c1(1−µt) + c2(1−µt)2 + c5/2(1−µt)5/2 +O
(
(1−µt)3

)
.

The constant κ of Theorem 1.1 is then c5/2/Γ (−5/2).
2. Since any algebraic series is also D-finite, the series G′(1,1) =

∑
n g(n)tn also satisfies a

linear differential equation. The corresponding linear recurrence relation reads

(n+ 4)(2n+ 7)g(n+ 2) = 2
(
11n2 + 44n+ 42

)
g(n+ 1) +n (2n+ 1)g(n) .

One may wonder whether this can be explained combinatorially directly on intervals.
3. In the same way we have parametrized rationally t and G′(1,1) by Z, we can write x and
G′(x,1) as rational functions in Z and the unique series U (x) with constant term 0 satisfying

U (x) = tx(1 +U (x))
(
1 + 3Z +Z2 +Z(1 +Z)U (x)

)
.

Note that U (1) = Z/(1+Z). One can then write x rationally in terms of U and Z. In particular,
the discriminant ∆(x) becomes a square, and finally

G′(x,1) = G′(1,x) =
tx(1 +U )

(1 + 2Z)2 (1 + 3Z +Z2 −Z2U )
P (Z,U )

with

P (Z,U ) = −Z7 (1 +Z)3U4 −Z5(1 +Z)2
(
2Z3 + 3Z2 − 4Z − 2

)
U3

+Z3(1 +Z)
(
13Z5 + 49Z4 + 62Z3 + 24Z2 − 1

)
U2

+Z2
(
2Z8 + 35Z7 + 140Z6 + 221Z5 + 120Z4 − 48Z3 − 80Z2 − 31Z − 4

)
U

+
(
Z2 + 3Z + 1

)(
Z8 + 15Z7 + 31Z6 + 10Z5 − 19Z4 − 7Z3 + 9Z2 + 6Z + 1

)
.

Proof of Proposition 5.1. As discussed at the end of Section 4, the series R(t;x,y) = G′(t;1 +
x,1 + y)/(t(1 + x)(1 + y)) counts, by length and final coordinates, quadrant walks with step
polynomial

S(x,y) = 3 +
1
xy

+
2
x

+
2
y

+
x
y

+
y

x
+ x+ y.

These walks have already been counted in [8], but without the empty step, which has multi-
plicity 3 here. This means that the series R is related to the series denoted Q in [8] and Qold

here, to avoid confusion, by

R(t;x,y) =
1

1− 3t
Qold

( t
1− 3t

;x,y
)
.

We now dig in the details of the solution presented in [8, App. A.7]. The series denoted Z(t)
in Eq. (A.8) of [8], and Zold(t) in the present paper, is related to the series Z(t) of the propo-
sition by

Z(t) = 2×Zold
( t

1− 3t

)
.

Using Eq. (A.9) of [8], which gives the expression of Qold(t;0,0), we then obtain

G′(t;1,1) = tR(t;0,0) =
1

1− 3t
Qold

( t
1− 3t

;0,0
)

= Z(1− 2Z + 2Z3).
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Then Eq. (A.10) in [8] gives a quadratic equation for Qold(t;0, y), or equivalently Qold(t;y,0),
with coefficients that are rational expressions in t, y and two series A1 and A2, having them-
selves rational expressions in Zold. From this we derive a quadratic equation for G′(t;x,1)
in terms of x and Z (details are given in our Maple session). Solving this equation gives the
announced rational expression of G′(t;x,1) in terms of x, Z and

√
∆(x). □

5.2. The finals descents of P andQ

We will now solve the equation (12) defining Q(x,y), and thus count intervals [P ,Q] by
the heights of the final descents of P and Q. Our solution is inspired from the invariant
approach used in [8] to solve, among other equations, the equation (13) defining R(x,y) (or
more precisely, its variant with no empty step). The proof is detailed in Appendix A. The
specialists of equations in two catalytic variables may be interested in the fact that it uses
both an additive and a multiplicative decoupling.

Proposition 5.2. The series G(t;x,y) that counts intervals [P ,Q] in the lattices Dn by the size,
the height of the last descent of P and the height of the last descent of Q, is algebraic of degree 12
over Q(t,x,y), and can be expressed as follows.

Let Z be the only series in t with constant term 0 satisfying

Z = t(1 +Z)(1 + 2Z)2.

Then

G(x,1) =
C0(x)−C1(x)

√
∆1(x)

2x2Z2 ,

with

∆1(x) = (1 +Z − xZ)
(
(1 + 2Z)2 (1 +Z)− xZ

)
,

C1(x) = (x − 1)
(
(1 + 2Z)2 − 2xZ

)
(2(1 +Z) (1 + 2Z)− x)

and

C0(x) = −2(1 +Z)2 (1 + 2Z)4 + 3(1 +Z) (1 + 2Z)2
(
4Z3 + 8Z2 + 6Z + 1

)
x−(

12Z6 + 64Z5 + 132Z4 + 134Z3 + 70Z2 + 16Z + 1
)
x2+Z

(
12Z3 + 24Z2 + 16Z + 3

)
x3−2Z2x4.

Analogously,

G(1, y) =
D0(y)−D1(y)

√
∆2(y)

2yZ(1− y)2 ,

with

∆2(y) = (1 + 2Z)2 − 4yZ(1 +Z),

D1(y) = (1 + 2Z − y)(2 + 2Z − y(1 + 2Z)),

and

D0(y) = −2Z y3 +
(
4Z3 + 8Z2 + 10Z + 1

)
y2 −

(
12Z3 + 24Z2 + 16Z + 3

)
y + 2(1 + 2Z)2 (1 +Z) .

An algebraic expression of G(x,y) in terms of x,y and Z can then be obtained from the functional
equation of Proposition 4.2.
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Remarks
1. Note that the second factor in ∆1(x) is simply Z(1− tx)/t.
2. Again we have rational parametrisations for the series G(x,1) and G(1, y), by series U ≡U (x)
and V ≡V (y) (with no constant term in t) satisfying

U =
xZ(1 +U )

(1 +Z)(1 + 2Z −Z2U )
, and V =

yZ(1 +Z)(1 +V )2

(1 + 2Z)2 ,

respectively. Indeed,

G(x,1) = U
(1 +Z)P (Z,U )

(1 + 2Z −Z2U )2 ,

with

P (Z,U ) = 2Z6 (1 +Z)U3 +Z4
(
8Z3 + 4Z2 − 8Z − 5

)
U2

+Z2
(
6Z5 − 6Z4 − 20Z3 − 5Z2 + 9Z + 4

)
U − (1 + 2Z)

(
4Z5 + 4Z4 − 2Z3 − 3Z2 +Z + 1

)
,

and

G(1, y) = V
2Z2 (1 +Z)2V 2 +Z

(
4Z3 + 4Z2 − 4Z − 3

)
V + (1 +Z)

(
2Z3 − 2Z2 + 1

)
(1 +Z −ZV )2 .

6. Asymptotic enumeration of intervals
Our aim in this section is to prove Propositions 1.2 and 1.3, which give asymptotic es-

timates for the interval numbers in Dm,n and D
′
m,n and establish non-D-finiteness results.

The key ingredient is the existence of bijections between intervals and quadrant walks, de-
scribed in Section 4, combined with general asymptotic results on such walks by Denisov
and Wachtel [31] and their application to enumeration by Bostan et al. [11]. So far these
results do not seem to have been applied to walks with infinitely many allowed steps, but,
as will shall see by following the arguments of [11], this does not raise difficulties as long as
the step generating function converges in a sufficiently large domain.

6.1. Intervals ofDm,n

Proof of Proposition 1.2. According to the second part of Corollary 4.3, the number gm(n) of
intervals in the ascent lattice Dm,n is also the number of quadrant excursions of length n
taking their steps in the set Sm. The generating function of this set is

Sm(x,y) = xm +
m−1∑
i=−∞

xi
m−i∑
j=−∞

yj = xm +
m−1∑
i=−∞

xi
ym−i

1− 1/y
=
xm (xy − x+ y)
(x − y) (y − 1)

.

It converges absolutely for 1 < |y| < |x|. We now follow the probabilistic arguments of [11,
Sec. 2.3] (see also [31, Sec. 1.5]). We consider a random walk (Y1(n),Y2(n))n≥0 in Z

2, start-
ing at (0,0) and taking its steps in Sm, where each step (i, j) occurs with a probability
x0

iy0
j /Sm(x0, y0), for some (x0, y0) chosen such that 1 < y0 < x0. We moreover require that

∂Sm
∂x

(x0, y0) =
∂Sm
∂y

(x0, y0) = 0,
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as this choice guarantees that the walk (Y1,Y2) has no drift, that is, the average displacement
is zero. This gives

x0 =
2 +
√
m2 + 4
m

, y0 =

√
m2 + 4−m+ 2

2
=
m
2

(x0 − 1),

and one can check that indeed, 1 < y0 < x0. The next step is to apply to the walk Y = (Y1,Y2)
a linear transformation so that the covariance matrix of the resulting walk, denoted Z =
(Z1,Z2), is the identity. As in [11], the image by this transformation of the first quadrant
ends up being a wedge Wc of opening arccos(−c), where

c =

∂2Sm
∂x∂y√

∂2Sm
∂x2

∂2Sm
∂y2

(x0, y0).

This coincides with the value of c given in Proposition 1.2. Now the probability that the
walk (Z1,Z2) visits (0,0) at time n without exiting the wedge Wc before is

pm(n) :=
gm(n)

Sm(x0, y0)n
,

as each of the corresponding trajectories has probability 1/Sm(x0, y0)n. Now the random
walk Z satisfies the conditions of [31]: its steps are not contained in any (linear) half-plane,
it is aperiodic (since the step (0,0) is allowed), has no drift, its covariance matrix is the
identity, and there are finite moments of any order. Moreover, the point (0,0) can be reached
from infinity (an assumption that seems to be missing in [31], see [9, Sec. 3.3]). By [31,
Thm. 6], there exists a positive constant κ such that

pm(n) ∼ κn−1−π/ arccos(−c).

Combining this with the previous identity, and using

µ := Sm(x0, y0) =
m
√
m2 + 4 +m2 + 2

2
·
2 +

√
m2 + 4
m

m ,

yields the announced asymptotic estimate of gm(n).
Let us now discuss the implications of this result on the nature of the generating function

of these numbers.
When m = 1, we obtain c = (1−

√
5)/4, so that the uncorrelated random walk Z lives in a

cone of opening arccos(−c) = 2π/5, and the exponent α is −7/2, as already established in the
previous section.

Let us now prove that m = 1 is the only integer value of m for which π/ arccos(−c) is
rational. By [11, Thm. 3], this implies that the series

∑
n gm(n)tn = Gm(1,1) is not D-finite

when m > 1. If arccos(−c) was a rational multiple of π, say of the form π −θ, then we would
have c = cosθ = (z+ 1/z)/2 for z = eiθ a root of unity. Since c is a root of the polynomial

Pm(u) := 4
(
m2 + 3

)
u4 − 4

(
m2 + 2

)
u2 +m2,

the two solutions z and 1/z of c = (z+ 1/z)/2 are roots of

Pm(v) :=
(
m2 + 3

)
v8 + 4v6 + 2

(
m2 + 1

)
v4 + 4v2 +m2 + 3.

So we only have to prove that this polynomial admits no root of unity — that is, no cyclo-
tomic factor — for m > 1. There are exactly 18 cyclotomic polynomials of degree at most 8.
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The first one is of course φ1(v) = v−1, and the last one is φ30(v) = v8 +v7−v5−v4−v3 +v+1.
We then take each of these polynomials φ(v) one by one, and reduce Pm(v) modulo φ(v) to
detect if it could be a multiple of φ(v) for some values of m. But the leading coefficient of the
remainder (which is a polynomial in m) never vanishes when m is an integer larger than 1.
For instance, for φ = φ30, we find

Pm(v) mod φ30 = −
(
m2 + 3

)
z7 + 4z6 +

(
m2 + 3

)
z5 +

(
3m2 + 5

)
z4 +

(
m2 + 3

)
z3 + 4z2 −

(
m2 + 3

)
z,

and the leading coefficient −(m2 + 3) has no integer root. We conclude that no root of Pm(v)
is a root of unity, so that the exponent α is irrational, and the generating function of the
numbers gm(n) is not D-finite. □

6.2. Intervals ofD′m,n

Proof of Proposition 1.3. We now argue in a similar fashion for mirrored m-Dyck paths. Ac-
cording to the second part of Corollary 4.7, the number g ′m(n) of intervals in the ascent poset
D
′
m,n is also the number of quadrant excursions of length n taking their steps in the set S ′m.

The generating function of this set is

S ′m(x,y) = xm
0∑

j=−∞
yj +

m−1∑
i=−∞

xi
1∑

j=−∞
yj =

xm

1− 1/y
+

xm−1

1− 1/x
·

y

1− 1/y
=
xmy (x+ y − 1)
(x − 1)(y − 1)

.

It converges absolutely for 1 < |x| and 1 < |y|. The critical point (x0, y0) is now

x0 =
2m2 + 1 +

√
4m2 + 1

2m2 , y0 =
2m+ 1 +

√
4m2 + 1

2m
= 1 +m(x0 − 1),

and one can check that indeed, 1 < x0 and 1 < x0. The opening angle is found to be arccos(−c),
where c takes the value of Proposition 1.3. One obtains the asymptotic estimate of g ′m(n) as
before, using

µ := S ′m(x0, y0) =
(
2m+

√
1 + 4m2

)1 +
√

1 + 4m2

2m

2m

.

It remains to prove that the exponent α is irrational for m > 1. The argument is the same
as in the previous subsection, with now

Pm(v) =
(
3m2 + 1

)
v8 + 4m2v6 + 2

(
m2 + 1

)
v4 + 4m2v2 + 3m2 + 1.

□

Remark 6.1. One could alternatively establish the asymptotic estimate of g ′m(n) via the bi-
jection with weighted walks mentioned in Corollary 4.8. Recall that these walks use finitely
many steps only.

7. Final comments
Several questions that have been investigated on other Dyck posets may be asked for the

ascent poset. For instance, what is the height of a random vertex of P or Q in an interval
[P ,Q] (see [28])? Can one write a q-analogue of our functional equations recording the size
of the longest chain from P to Q (see [18, 21])?

Conversely, it seems to be the first time that an order induced on mirrored m-Dyck paths
is examined. For the ascent orders as for the other Dyck orders (e.g., Tamari) this seems
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less natural than studying m-Dyck paths because mirrored paths do not form an upper ideal
(while m-Dyck paths do). However, this is how we discovered here the connection with
sylvester classes of m-parking functions, and were able to count these, at least asymptoti-
cally. Would interesting results arise from other orders?

The most immediate question raised by this paper is probably to explain bijectively, and
non-recursively, the symmetry in x and y of the series G′1(x,y) that counts ascent intervals
[P ,Q] in D1 by the height a(P ) of the first ascent of P (variable x) and the statistics r(P ,Q)
defined at the beginning of Section 4.2 (variable y). Recall that this is directely related to
the fact that the quadrant walks that encode the recursive construction of these intervals
(Corollary 4.7) have a step set S ′1 that is x/y-symmetric. On these walks, the involution
is obvious and consists in a reflection in the first diagonal. In recursive terms, if w′ is a
quadrant walk and w is the walk obtained by deleting its final step (δx,δy), then the image
of w′ by the involution is obtained by appending the step (δy ,δx) at the end of the image of w.
Recall the quadrant walk associated with an interval [P ,Q] such a(P ) = a and r(P ,Q) = r ends
at (a−1, r −1). Hence we can define an involution f on intervals [P ′ ,Q′], recursively on their
size n as follows:

• f ([UD,UD]) = [UD,UD]
• for n > 1, let b = a(P ′) and s = r(P ′ ,Q′), and let [P ,Q] be the interval of size n− 1 ob-

tained by deleting the initial peaks of P ′ and Q′. Then f ([P ′ ,Q′]) is the only interval
[P̄ ′ , Q̄′] obtained by insertion of peaks in f ([P ,Q]) such that a(P̄ ′) = s and r(P̄ ′ , Q̄′) = b.
An example is given is Figure 10.

[P3,Q3][P2,Q2]
[P1,Q1]

[P̄1, Q̄1] [P̄2, Q̄2] [P̄3, Q̄3]

[P4,Q4]

[P̄4, Q̄4]

(2,1)(1,2)
(1,1)

(1,1) (2,1) (1,2)

(1,2)

(2,1)

f

Figure 10. Recursive construction of an interval [P4,Q4] in D4, and of its im-
age [P̄4, Q̄4] by the involution f . For each interval [P ,Q] we give the statistics
(a(P ), r(P ,Q)).
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Appendix A. Proof of Proposition 5.2
Here we solve the equation (12) defining Q(x,y), by adapting the invariant approach of [8].

All details of the calculations can be followed on an accompanying Maple session, available
on the second author’s webpage.

In Eq. (12), let us group the terms involving Q(x,y), and multiply out by (y − 1). We thus
obtain

K(x,y)(y − 1)Q(x,y) = y − 1− t xQ
(x,1)−Q(1,1)

x − 1
−

ty3

x − y
Q(y,y), (15)

where

K(x,y) = 1− tx −
txy2

(x − y)(y − 1)
(16)

is the kernel of the equation.

A.1. Invariants

The notion of invariants is related to the expansion (in t) of 1/K(x,y). Namely,

1
K(x,y)

=
∑
n≥0

tn
(
x+

xy2

(x − y)(y − 1)

)n
.

This is a series in t, with coefficients in Q(x,y). The denominators of these coefficients are
powers of (x − y)(y − 1). Seen as fractions in y, they have a pole at x and a pole at 1, and the
orders of these two poles increase with the exponent of t. Let us now introduce a notion of
series with poles of bounded order.

Definition A.1. Let F(t;x,y) =
∑

n t
nfn(x,y) be a Laurent series in t with coefficients in Q(x,y).

We say that F has poles of bounded order at y = 1 and y = x if there exists an integer m such
that the coefficients of (x − y)m(y − 1)mF(t;x,y), seen as rational functions in y, have no pole at
y = 1 nor y = x. We will often say, for short, that F has poles of bounded order.

Clearly, the above series 1/K(x,y) does not have poles of bounded order.

Definition A.2. A pair (I(x), J(y)) of Laurent series in t with coefficients in Q(x) and Q(y), re-
spectively, is a pair of invariants if the ratio

I(x)− J(y)
K(x,y)

,

expanded as a series in t with coefficients in Q(x,y), has poles of bounded order.

Note that in this case, J(y) itself has no pole at y = x (because it does not depend on x), but
may have a pole (of bounded order) at y = 1. The following lemma allows us to build new
pairs of invariants from old. Its proof mimics the proof of Lemma 2.8 in [16].

Lemma A.3. The componentwise sum of two pairs of invariants (I1(x), J1(y)) and (I2(x), J2(y)) is
still a pair of invariants. The same holds for their componentwise product.

The following lemma will be key to construct equations (for Q(x,1), or Q(y,y)) in a single
catalytic variable — hence with an algebraic solution, by [19].
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Lemma A.4. Let (I(x), J(y)) be a pair of invariants such that the ratio

I(x)− J(y)
(x − y)(y − 1)K(x,y)

,

expanded in powers of t, has coefficients with no pole at y = 1 nor y = x (when seen as rational
series in y). Then I(x) and J(y) are equal, and in particular, they depend on t only.

Proof. Assume on the contrary that I(x) , J(y), and write

I(x)− J(y) = (x − y)(y − 1)K(x,y)H(x,y),

where H(x,y) is a non-zero series in t, with coefficients in Q(x,y) and no pole at y = 1 nor
y = x. Let m be the valuation of H(x,y) in t, and denote by hm(x,y) , 0 the coefficient of tm.
Then, given that K(x,y) = 1 +O(t),

I(x)− J(y) = (x − y)(y − 1)hm(x,y)tm +O(tm+1).

Let us write I(x) =
∑

n in(x)tn and J(y) =
∑

n jn(y)tn. The above identity gives

im(x)− jm(y) = (x − y)(y − 1)hm(x,y).

By assumption, hm(x,y), seen as a fraction in y, has no pole at y = 1 nor at y = x. Hence the
same holds for jm(y). Evaluating the above identity at y = 1 shows that im(x) = jm(1), so that
im(x) does not depend on x. We now have

jm(1)− jm(y) = (x − y)(y − 1)hm(x,y).

Evaluating this at y = x gives jm(x) = jm(1) = im(x), but this forces hm(x,y) = 0, a contradic-
tion. □

A.2. A finite group, and rational invariants

To the kernel K , given by (16), one can associate as in [20] a group of birational transfor-
mations of pairs (u,v) that leave the value K(u,v) unchanged. Solving K(u,v) = K(u′ ,v) for
u′ gives u′ = u or u′ = v (uv −u + v) /(u−v)/(v−1). Solving K(u,v) = K(u,v′) for v′ gives v′ = v
or v′ = uv/(uv −u + v). We introduce accordingly two transformations Φ and Ψ defined by

Φ(u,v) =
(
v (uv −u + v)
(u − v) (v − 1)

,v

)
, Ψ (u,v) =

(
u,

uv
uv −u + v

)
.

One can check that they are involutions, and generate a group G of order 10. The orbit of
(x,y) under the action of G is

(x,y)
Φ←→

(
y (xy − x+ y)
(x − y) (y − 1)

, y

)
Ψ←→

(
y (xy − x+ y)
(x − y) (y − 1)

,
xy − x+ y

x (y − 1)

)
Φ←→

(
xy − x+ y

y (y − 1)
,
xy − x+ y

x (y − 1)

)
Ψ←→(

xy − x+ y

y (y − 1)
,
xy − x+ y

y2

)
Φ←→

(
x (xy − x+ y)

y (x − y)
,
xy − x+ y

y2

)
Ψ←→

(
x (xy − x+ y)

y (x − y)
,

x
x − y

)
Φ←→(

xy

(y − 1)(x − y)
,

x
x − y

)
Ψ←→

(
xy

(y − 1)(x − y)
,

xy

xy − x+ y

)
Φ←→

(
x,

xy

xy − x+ y

)
Ψ←→(x,y).

Groups of order 10 also appear in the enumeration of several families of walks in the quad-
rant, including of course those used in the previous subsection [8, 45]. The group G can be
used to construct rational invariants. Guided by Theorem 4.6 in [8], we take any rational
function H(u,v), and compute the sum of its values over all pairs (u,v) of the above orbit.
Denoting this sum by Hσ (x,y), we now define I0(x) = Hσ (x,Y ) and J0(y) = Hσ (X,y), where X
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(resp. Y ) is a root of K(·, y) (resp. K(x, ·)). We could adapt the proof of Theorem 4.6 in [8] to
prove that (I0(x), J0(y)) then forms a pair of rational invariants. But this is not really needed,
as we can simply apply the above receipe with some rational function H(u,v), and check
that the resulting pair is indeed a pair of invariants.

So let us start for instance with H(u,v) = u. The above receipe gives I0(x) = J0(y) = −2+4/t,
which is a trivial pair of invariants. Starting instead from H(u,v) = v, we obtain a non-trivial
pair, which, after dividing by 2 and subtracting 2, reads

I0(x) =
1

1− tx
− 1
tx2 +

1 + t
tx

+ x(1− t)− tx2, J0(y) = − t

(y − 1)2 +
1− t
y − 1

− 1
ty2 +

1 + t
yt

+ y.

Indeed, one can check that

I0(x)− J0(y)
K(x,y)

=
(x − y)(1− y + txy)(x+ y − xy − xyt(1 + x − xy))

x2y2t(xt − 1)(y − 1)
, (17)

which has poles of bounded order (at y = 1 and y = x). Note that the pair (I0, J0) does not
satisfy the conditions of Lemma A.4.

A.3. Decouplings, and a new pair of invariants

Let us now return to the functional equation (15) that defines Q(x,y). We would like to
derive from it a new pair of invariants, that is, to transform it into an identity of the form

K(x,y)H(x,y) = I(x)− J(y), (18)

where H(x,y) has poles of bounded order. But there is an obstacle on our way, since the term
ty3/(x − y)Q(y,y) does not depend on y only, but also on x. A similar difficulty also arises,
for instance, when counting quadrant walks weighted by interactions with the coordinates
axes [3], or walks avoiding a quadrant [16, 34, 52], or in some continuous probabilistic mod-
els [22].

We are going to remedy this difficulty using a multiplicative decoupling (and later, an addi-
tive decoupling). First, we observe that by definition (16) of the kernel,

ty3

x − y
=

1− tx
x
· y(y − 1)−

y(y − 1)
x

K(x,y).

This is what we call a multiplicative decoupling: we have written the problematic term ty3/(x−
y) as the product of a series in x and a series in y, modulo the kernel K . This would not be
possible for any term of course. This allows us to rewrite (15) as follows:

K(x,y)(y − 1)
1− tx

(
xQ(x,y)− yQ(y,y)

)
=
x(y − 1)
1− tx

− tx
1− tx

xQ(x,1)−Q(1,1)
x − 1

− y(y − 1)Q(y,y), (19)

and our problem is solved, since the term in Q(y,y) no longer involves x.
However, we have created a second difficulty, and our equation still does not look like (18):

the constant term, which was formerly (y −1) in (15), now mixes x and y. This new problem
will be solved as well if we can find rational functions A(x), B(y) and H(x,y) such that

x(y − 1)
1− tx

= A(x) +B(y) +K(x,y)H(x,y), (20)

where H(x,y) does not contain a factor K(x,y) in its denominator. This is what we call
an additive decoupling. Again, an arbitrary rational function does not have, in general, an
additive decoupling.
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There are two ways to look for a solution (A,B) of (20) (see [8, Sec. 4.2] and our Maple

session for details). The first one is by guessing (say, the fraction B(y)) and checking. Let us
explain how this works. Denoting by Y0 and Y1 the two roots of K(x, ·), we observe that (20)
implies that

x
1− tx

=
B(Y0)−B(Y1)

Y0 −Y1
.

We can then start from an Ansatz on the form of B(y) (fixing the number of poles and their
orders, but not their values), form the divided difference (B(Y0)−B(Y1))/(Y0 −Y1), write it as
a fraction in x and t (since it is a symmetric function of the two roots Y0 and Y1), and solve
the resulting identity for the coefficients occuring in the Ansatz. This approach readily gives
a solution,

B(y) = −
y

t
+

1
t(y − 1)

− 1
t2y

,

from which we derive

A(x) =
2 + x
t

+
1
t2x

+
1

t(tx − 1)
.

We can now check that
x(y − 1)
1− tx

= A(x) +B(y) +K(x,y)
(x − y)(1− txy)
xyt2(1− tx)

. (21)

The second approach is constructive, and consists in applying Theorem 4.11 in [8] (even
though our kernel is not of the same form as the kernels studied in [8]). This gives an
alternative solution, differing from the above solution (A,B) by a pair of invariants. More
precisely, this new solution reads:

A(x) +
9
5t

I0(x)− 7
5t2 (1 + 3t), B(y)− 9

5t
J0(y) +

7
5t2 (1 + 3t).

Let us now combine the functional equation (19) with the decoupling relation (21): we
obtain

(x − y)(y − 1)K(x,y)
1− tx

(
xQ(x,y)− yQ(y,y)

x − y
−

1− txy
t2xy(y − 1)

)
= I1(x)− J1(y), (22)

with

I1(x) =
2 + x
t

+
1
t2x

+
1

t(tx − 1)
− tx

1− tx
xQ(x,1)−Q(1,1)

x − 1
, J1(y) =

y

t
− 1
t(y − 1)

+
1
t2y

+y(y−1)Q(y,y).

That is, we have found a second pair (I1, J1) of invariants, this time in terms of the unknown
series Q. It does not satisfy the conditions of Lemma A.4.

A.4. Equations in one catalytic variable

Our aim is now to combine polynomially our two pairs of invariants (I0, J0) and (I1, J1),
thanks to Lemma A.3, to form a new pair (I(x), J(y)) satisfying the conditions of Lemma A.4.
This will imply that I(x) and J(y) are in fact both equal to a series C depending on t only.
We will thus obtain an equation in only one catalytic variable for each of the two series
Q(x,1) = G(x,1)/(tx) and Q(y,y) = G(1, y)/t, just by writing I(x) = C = J(y).

Let us examine the ratios
I0(x)− J0(y)

(x − y)(y − 1)K(x,y)
and

I1(x)− J1(y)
(x − y)(y − 1)K(x,y)

,
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derived from (17) and (22), respectively. The coefficient of tn in each of these two series has
no pole at y = x. This is obvious for the first ratio, and for the second, this relies on the fact
that the divided difference

xQ(x,y)− yQ(y,y)
x − y

has polynomial coefficients in x and y. However, the coefficient of tn in the first (resp. sec-
ond) ratio has a double (resp. simple) pole at y = 1. Accordingly, we observe a double (resp.
simple) pole at y = 1 in J0(y) (resp. J1(y)). More precisely, the singular expansions at y = 1 of
these two series are respectively

J0(y) = − t

(y − 1)2 +
1− t
y − 1

+O(1) and J1(y) = − 1
t(y − 1)

+
1 + t

t2 +O(y − 1).

It is then natural to introduce the series

J(y) = J0(y) + t3J1(y)2 − t(1 + 3t)J1(y),

which has no pole at y = 1. By Lemma A.3, the pair (I(x), J(y)) forms a pair of invariants, if
we define I(x) by

I(x) = I0(x) + t3I1(x)2 − t(1 + 3t)I1(x).
Using (17) and (22), we can then check that this new pair of invariants satisfies the condition
of Lemma A.4. This implies that I(x) = J(y) = C for some series C. The latter series is easily
identified by expanding the expression of J(y) at y = 1. This gives

I(x) = 2− 4t − 2t2Q(1,1) = J(y).

We can now replace I(x) and J(y) by their expressions in terms of (xQ(x,1)−Q(1,1))/(x − 1)
and Q(y,y), respectively. This gives two polynomial equations,

Pol1(Q(x,1),Q(1,1), t,x) = 0, and Pol2(Q(y,y),Q(1,1), t,y) = 0.

Each of them is a polynomial equation in one catalytic variable only, quadratic in the main
series (that is, Q(x,1) or Q(y,y)).

A.5. Algebraicity

It remains to solve these two equations in one catalytic variable. We will work, say, with
the equation for Q(y,y), which is a bit lighter than the other. It reads:

Pol2(Q(y,y),Q(1,1), t,y) = 0, (23)

where

Pol2(q,q1, y, t) = y2t2 (y − 1)2 q2 +
(
y
(
2y2 − 5y + 1

)
t − (y − 1)(y − 2)

)
q+ 2tq1 + (y − 1)(y − 2) = 0.

This is a very simple instance of a polynomial equation in one catalytic variable [19]: it
is (only) quadratic in Q(y,y), and involves a single additional unknown series depending
on t only, namely Q(1,1). In this case, the machinery of [19] reduces to Brown’s quadratic
method [25, 41]. We first examine whether there exists formal power series Y ≡ Y (t) such
that the first derivative of the above polynomial Pol2, evaluated at (Q(Y ,Y ),Q(1,1), t,Y ),
vanishes. That is,

(Y − 1)(Y − 2) = 2t2Y 2(Y − 1)2Q(Y ,Y ) + tY (2Y 2 − 5Y + 1).

The form of this equation shows that two such series exist, with constant terms 1 and 2,
respectively. Then Brown’s result tells us that each of these two series is a double root of
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the discriminant of Pol2 with respect to its first variable, evaluated at (Q(1,1), t,y). That is, a
double root of

− 4t y5 +
(
−8Q11 t

3 − 7t2 + 22t + 1
)
y4 +

(
16Q11 t

3 + 18t2 − 40t − 6
)
y3

+
(
−8Q11 t

3 − 7t2 + 26t + 13
)
y2 − 4(t + 3)y + 4,

where we have written Q(1,1) = Q11. Since this polynomial in y has multiple roots, its
discriminant vanishes. This gives for Q11 the following cubic equation:

64t6Q3
11+16t3

(
11t2 − 18t − 1

)
Q2

11+
(
161t4 − 452t3 + 238t2 − 28t + 1

)
Q11+49t3−167t2+25t−1 = 0.

One can now check that if we introduce the series Z of Theorem 1.1, the above equation
factors and yields Q1,1 = (1 +Z)(1 + 2Z)2(1−2Z + 2Z3), so that G(1,1) = tQ(1,1) = Z(1−2Z +
2Z3).

Let us now return to (23). We can express t and Q11 as fractions in Z, and we now have
a quadratic equation for Q(y,y) with coefficients in Q(Z,y). Solving it then gives the an-
nounced expression of G(1, y) = tyQ(y,y) in Proposition 5.2.

We now proceed similarly with the other equation in one catalytic variable, Pol1(Q(x,1),
Q(1,1), t,x) = 0, which is quadratic in Q(x,1). We replace t and Q11 by their rational expres-
sions in Z, solve the resulting equation, and obtain the announced expression of G(x,1) =
txQ(x,1). □
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