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Abstract

An n-multiset of [k] = {1, 2, . . . , k} consists of a set of n elements from [k]
where each element can be repeated. We present the bivariate generating function
for n-multisets of [k] with no consecutive elements. For n = k, these multisets
have the same enumeration as directed animals in the square lattice. Then we give
constructive bijections between directed animals, multisets with no consecutive
elements and Grand-Dyck paths avoiding the pattern DUD, and we show how
classical and novel statistics are transported by these bijections.

Keywords: Multisets; directed animals; Grand-Dyck paths; Motzkin, Catalan.

1 Introduction and motivation

For several decades, directed animals have been widely studied in the literature. They
are special lattice point configurations, and their close links with certain problems of
thermodynamics, in particular with the problem of directed percolation [9, 10], gives
them an important place in the domains of theoretical physics and combinatorics. The
problem of the enumeration of animals of a given area was stated for the first time
by Harary in [16]. Then, Dhar, Phani and Barma [13] provided a first closed form
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for counting directed animals on the square and triangular lattices with respect to
area. Later other proofs of this result were given using new combinatorial structures
such as heaps of pieces [26] or gas models [1, 7, 12, 18]. In [2] Bacher provides a
generating function for the total site perimeter on the square and triangular lattices,
solving a conjecture proposed in 1996 by Conway [11]. But the problem of finding the
generating function for the enumeration of directed animals according to the area and
perimeter still remains open. According to [19], this function is not believed to be D-
finite. Hoping to capture properties on the perimeter, other studies present one-to-one
correspondences between directed animals and some restricted classes of already known
combinatorial objects such as guingois trees [5], heaps of dimers [8], forests of 1-2 trees
[4], permutations avoiding the patterns 321 and 41̄523 [4], and lattice paths [6, 15].

The purpose of this paper is to present new combinatorial classes in bijection with
directed animals on the square and triangular lattices. After preliminary discussions
on multisets in Section 2, we exhibit in Section 3 a correspondence with Grand-Dyck
paths avoiding the pattern DUD that is in turn in correspondence with multisets with
no consecutive elements. Then, we show how these bijections transport classical and
novel parameters on these classes, which opens a new way to explore statistics on
directed animals in the well-known contexts of Dyck paths and multisets.

2 Preliminaries

An n-multiset on [k] = {1, 2, . . . , k} consists of a set of n elements from [k] where we per-
mit each element to be repeated [17, 23]. Throughout this paper, an n-multiset π will be
represented by the unique sequence π1π2 . . . πn of its elements ordered in non-decreasing
order, e.g. the multiset {1, 1, 2, 2, 3, 3} will be written 112233. For n, k ≥ 1, let Mn,k

be the set of n-multisets of [k]. We set Mn = Mn,n and M =
⋃

n≥1Mn. For instance,
we have M3,2 = {111, 112, 122, 222} and M3 = M3,2 ∪ {113, 123, 133, 223, 233, 333}.
The graphical representation of a multiset π ∈ Mn,k is the set of points in the plane at
coordinates (i, πi) for i ∈ [n]. Whenever none of the points (i, πi) lie below the diagonal
y = x, i.e., i ≤ πi for all i ∈ [n], π will be called superdiagonal. Let Ms

n,k (resp. Ms
n)

be the set of superdiagonal n-multisets of [k] (resp. of [n]) and Ms =
⋃

n≥1Ms
n.

From a multiset π ∈ Mn,k, we consider the path of length n + k on its graphical
representation with up and right moves along the edges of the squares that goes from
the lower-left corner (0, 0) to the upper-right corner (n, k) and leaving all the points
(i, πi), i ∈ [n], to the right and remaining always as close to the line x = n as possible
(see the left part of Figure 1 for an example). Then, the number of n-multisets of [k]
is the number of possibilities to choose n right moves among k+ n− 1 moves (the first
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is necessarily an up move), that is the binomial coefficient
(

k+n−1
n

)

(see for instance
[23]). Reading this path from left to right, we construct a lattice path of length n + k
from (0, 0) to (n+ k, n− k) by replacing any up-move with up step U = (1, 1) and any
right-move with down step D = (1,−1). Clearly, this path starts with U and consists
of n up steps and k down steps. As a byproduct whenever n = k, this construction
induces a bijection Φ between Mn and the set GDn of Grand-Dyck paths of semilength
n starting with an up-step, that is the set of paths from (0, 0) to (2n, 0) starting with
U and consisting of U and D steps. Moreover, the image by Φ of Ms

n is the set Dn

of Dyck paths of semilength n, i.e. the subset of paths in GDn that do not cross the
x-axis. See Figure 1 for two examples of this construction.

Theorem 1. The map Φ is a bijection from Mn to GDn, and the image of Ms
n is Dn.
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Figure 1: Illustration of the bijection Φ between multisets and lattice paths

Now, let us define the set M⋆
n,k of n-multisets of [k] with no consecutive integers,

i.e., multisets π such that πi+1 6= πi + 1 for all i ∈ [n − 1]. Then we set M⋆
n = M⋆

n,n,
Ms,⋆

n = M⋆
n ∩Ms

n, M⋆ =
⋃

n≥1M⋆
n and Ms,⋆ =

⋃

n≥1Ms,⋆
n . On the other hand, if P

is a set of lattice paths consisting of U and D steps, then we denote by P⋆ the subset
of P consisting of paths that do not contain any occurrence of the pattern DUD.

Considering these notations, it is straightforward to obtain the following theorem.

Theorem 2. The map Φ induces a bijection from M⋆
n to GD⋆

n, and from Ms,⋆
n to D⋆

n.

It is well known (see for instance [20, 21, 25]) that the cardinality of D⋆
n is given

by the general term of Motzkin sequence A001006 in [22]. Then, using Theorem 2 the
cardinality of the set Ms,⋆

n is also counted by this sequence.
Now, using combinatorial arguments, we prove that the cardinality of M⋆

n is given
by the general term of the sequence A005773 in [22] which also counts directed animals
with a given area on the square lattice.
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k\n 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 4 5 6 7 8 9 10 11

4 4 7 10 13 16 19 22 25 28

5 5 11 18 26 35 45 56 68 81

6 6 16 30 48 70 96 126 160 198

Table 1: The number of n-multisets of [k] with no consecutive integers

Theorem 3. The ordinary generating function for n-multisets of [n] with no consecutive
integers is

1− 3 z −
√
1− 2z − 3 z2

6 z − 2
.

Proof. Let f(z, u) =
∑

n,k≥1 fn,k z
nuk be the bivariate generating function for the set

M⋆
n,k. That is, the coefficient fn,k is the number of n-multisets of [k] with no consecu-

tive integers. We build such a multiset by considering each integer from {1, . . . , k} in
turn, and marking how many times it occurs in the multiset. Each of the k integers
contributes a factor of u, and each occurrence in the multiset contributes a factor of z.

Using this approach, f(z, u) can be written in the following form:

f(z, u) = Seq[u] × u Seq+[z] × Seq
[

Seq+[u] u Seq+[z]
]

× Seq[u], (1)

in which we make use of notation of Flajolet and Sedgewick [14]: Seq[x] = 1/(1−x) =
1 + x + x2 + . . . represents the occurrence of zero or more items counted by x, and
Seq+[x] = x/(1− x) = x+ x2 + . . . represents the occurrence of one or more items.

The first term of (1), Seq[u], represents the (possibly empty) initial sequence of
integers not in the multiset. The second term, uSeq+[z], represents the first integer in
the multiset, occurring one or more times.

Each subsequent integer, if any, that occurs one or more times in the multiset is
preceded by at least one integer not in the multiset, since it does not contain con-
secutive integers. So each such additional integer in the multiset is represented by
Seq+[u]uSeq+[z]. The third term of (1) thus represents all of the subsequent integers
in the multiset. Finally, the fourth term, Seq[u], represents the (possibly empty) final
sequence of integers not in the multiset.
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Expansion and simplification yields

f(z, u) =
uz

(1− u) (1− u− z + uz − u2z)
.

Small values of fn,k are shown in Table 1.
As a consequence of the bijection Φ, the set of lattice paths of length n+ k starting

at (0, 0), ending at (n + k, n − k) consisting of n up steps and k down steps, starting
with an up-step and avoiding the pattern DUD has a bivariate generating function
given by f(zu, z/u).

In order to obtain the generating function for the set M⋆
n = M⋆

n,n, we require
the diagonal ∆(f)(z) =

∑

n≥1 fn,nz
n = [u0]f(z/u, u), where [u0]g(u) is the constant

coefficient of u in g(u).
If g(u) = g(u, z) is a formal Laurent series, then the constant term [u0]g(u) is given

by the sum of the residues of u−1g(u) at those poles α of g(u) for which limz→0 α(z) = 0
(see [24, Section 6.3]).

In our case, f(z/u, u) has a single pole α(z) for which α(0) = 0, and the residue of
u−1f(z/u, u) at α(z) is

1− 3 z −
√
1− 2z − 3 z2

6 z − 2

as required.

As a consequence of the bijection Φ, we have the following.

Corollary 4. The ordinary generating function for Grand-Dyck paths of semilength n
starting with an up-step and avoiding the pattern DUD is counted by sequence A005773
in [22].

Sequence A005773 in [22] counts diverse combinatorial objects, including various
other types of lattice paths. For example, Banderier et al prove in [3] that Motzkin
meanders (prefixes of Motzkin paths) are enumerated by this sequence. Sapanoukis
et al. [21] state that Grand-Dyck paths of semilength n starting with an up-step and
avoiding the pattern UDU are also counted by this sequence. We are unaware of a
published proof of this, so present one very briefly here. We use the fact that the
construction behind Φ induces a bijection between these Grand-Dyck paths avoiding
UDU and n-multisets of [n] in which no integer except n occurs exactly once.

Theorem 5. The set of n-multisets of [n] in which no integer except n occurs exactly
once is counted by sequence A005773 in [22].
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Proof. Let h(z, u) be the bivariate generating function for n-multisets of [k] in which
no integer except k occurs exactly once. We have

h(z, u) = Seq
[

u
(

Seq[z]− z
)]

× u Seq[z] =
u

1− z − u (1− z + z2)
,

where the first term of the construction represents no occurrence or at least two occur-
rences of each integer from {1, . . . , k− 1}, and the second term represents zero or more
occurrences of k. Extracting the diagonal then yields

[u0]h(z/u, u) =
1− 3 z −

√
1− 2z − 3 z2

6 z − 2

as required.

Corollary 6. The ordinary generating function for Grand-Dyck paths of semilength n
starting with an up-step and avoiding the pattern UDU is counted by sequence A005773
in [22].

3 From multisets to directed animals via Grand-

Dyck paths

A directed animal A of area n (or equivalently with n nodes) in the triangular lattice
is a subset of n points in the lattice containing (0, 0) and where any point in A can be
reached from (0, 0) with up-moves (0, 1), right-moves (1, 0) and diagonal moves (1, 1)
by staying always in A. Directed animals in the square lattice are those that do not use
diagonal moves. See the left part of Figure 2 for an example of directed animal in the
triangular lattice, and we refer to references in Introduction for several combinatorial
studies on these objects. Let Qn (resp. Tn) be the set of directed animals with n nodes
in the square (resp. triangular) lattice, then its cardinality is given by the nth term
of the sequence A005773 in [22] (resp. by the binomial coefficient

(

2n−1
n

)

). We set
Q = ∪n≥1Qn, T = ∪n≥1Tn and obviously we have Q ⊂ T .

In the literature [8, 26, 27], directed animals are often viewed as heaps obtained by
dropping vertically dimers such that each dimer (except the first) touches the one below
by at least one of its extremities. Indeed, from A ∈ T , we apply a counterclockwise
rotation of 45 degree of its graphical representation and we replace each point of A with
a dimer of width

√
2/2. See Figure 2 for an example of such a representation. Notice

that directed animals in Q correspond to heaps of dimers where no dimer has another
dimer directly above it (such a heap will be called strict). Let T s (resp. Qs) be the set
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Figure 2: A directed animal and its associated heap.

of all subdiagonal directed animals in T (resp. Q), i.e., directed animals where all its
points (i, j) satisfy j ≤ i.

Without losing accuracy, the sets T and Q will also be used to designate respectively
the set of heaps of dimers and the set of strict heaps of dimers. Then, any heap A ∈ T s

has a unique factorization into one of the four following forms (see [8]):

(i) (ii)
B

(iii)
B

(iv)
C

B
,

where B,C ∈ T s. Moreover, any heap A ∈ T \T s has a unique factorization:

(v) B
C

,

where B ∈ T s and C ∈ T .
The factorization of A ∈ Q (resp. A ∈ Qs) is obtained after omitting the case

(iii). Translating these factorizations using functional equations involving the generat-
ing functions T (z) and T s(z) for T and T s (resp. Q(z) and Qs(z) for Q and Qs), we
obtain

T s(z) =
1− 2z −

√
1− 4z

2z
, T (z) =

1− 4 z −
√
1− 4z

8 z − 2
,

Qs(z) =
1− z −

√
1− 2z − 3 z2

2z
, and Q(z) =

1− 3 z −
√
1− 2z − 3 z2

6 z − 2
.

The coefficients of zn in the Taylor expansion of Qs(z) (resp. Q(z), T s(z) and T (z))
generate a shift of the Motzkin sequence A001006 (resp. A005773, the Catalan sequence
A000108 and A001700) in [22]).
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Now, we construct a bijection from Mn to the set Tn of directed animals in the
triangular lattice which transports M⋆

n into Qn. We proceed in two steps. Firstly, we
define a bijection from T s

n to Ms
n for n ≥ 1, and secondly we extend it from Tn to Mn.

For the first step, and according to the above bijection Φ from Ms
n to Dn, it suffices

to define a one-to-one correspondence Ψ between T s
n and Dn. Letting A be a directed

animal in T s, we define Ψ(A) with respect to its four possible factorizations:

• if A satisfies (i) then Ψ(A) = UD,

• if A satisfies (ii) then Ψ(A) = UΨ(B)D,

• if A satisfies (iii) then Ψ(A) = Ψ(B)UD,

• if A satisfies (iv) then Ψ(A) = Ψ(C)UΨ(B)D.

Due to the recursive definition, the image by Ψ of a directed animal in T s
n is a Dyck

path of semilength n, and the image of an element of Qs
n is a Dyck path with no pattern

DUD, i.e. in D⋆
n.

Theorem 7. For n ≥ 1, the map Φ−1 ·Ψ is a bijection from T s
n to Ms

n, and the image
of Qs

n is Ms,⋆
n .

Proof. Since Φ−1 is a bijection from Dn to Ms
n, it suffices to prove that Ψ is a bijection

from T s
n to Dn. As these two last sets are both enumerated by the Catalan numbers,

it suffices to prove the injectivity of Ψ. We proceed by induction on n. The case n = 1
holds trivially. We assume that Ψ is injective for k ≤ n, and we prove the result for
n + 1. By definition, the image by Ψ of animals satisfying (i) and (ii) are Dyck paths
with only one return on the x-axis, i.e. with only one down step D that touches the
x-axis. Animals satisfying (iii) are sent by Ψ to Dyck paths ending with DUD and with
at least two return on the x-axis. Animals satisfying (iv) are sent to Dyck paths with at
least two down steps at the end, and with at least two returns. Then, for A,A′ ∈ T s

n+1,
Ψ(A) = Ψ(A′) implies that A and A′ belong to the same case (i), (ii), (iii) or (iv). The
recurrence hypothesis induces A = A′ which completes the induction. Moreover, in the
case where A ∈ Qs

n, it does not satisfy (iii) and this implies that Ψ(A) is a Dyck path
avoiding DUD. Finally, a cardinality argument proves that Ψ(Qs

n) = Ms,⋆
n .

Now we extend the map Ψ from Tn to Mn as follows. Let A be a directed animal
in Tn\T s

n , then A can be factorized as (v) with B ∈ T s and C ∈ T . In the subcase
where C ∈ T \T s, C satisfies the case (v), and let D ∈ T s, E ∈ T be the two parts of
its factorization. According to these two cases, we set:
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Ψ(A) =

{

Ψ(B)Ψ(C)r if C ∈ T s,

Ψ(B)Ψ(D)rΨ(E) otherwise,

where P r is obtained from P by reading the Dyck path P from right to left (for instance,
if P = UUDUUDDD then P r = DDDUUDUU). Less formally, Ψ maps successive
components from T s to Dyck paths alternately above and below the x-axis. See Figure 3
for an illustration of the map Ψ.

Theorem 8. For n ≥ 1, the map Φ−1 ·Ψ is a bijection from Tn to Mn, and the image
of Qn is M⋆

n.

Proof. Let us prove that Ψ is a bijection from Tn to Mn. As these two sets have the
same cardinality, it suffices to prove the injectivity of Ψ. Using Theorem 7, it remains
to prove that directed animals A ∈ Tn\T s

n are sent bijectively by Ψ to Grand-Dyck
paths in GDn\Dn. Due to the definition of Ψ whenever A ∈ Tn\T s

n , we have either
Ψ(A) = Ψ(B)Ψ(C)r or Ψ(A) = Ψ(B)Ψ(D)rΨ(E) with B,C,D ∈ T s and E ∈ T .
Then, the path Ψ(A) starts with an up-step (the first step of the non-empty Dyck path
Ψ(B)), and since the first step of Ψ(C)r (resp. Ψ(D)r) is a down-step, Ψ(A) crosses
the x-axis which ensures that Ψ(B)Ψ(C)r (resp. Ψ(B)Ψ(D)r) belongs to GDn\Dn.
We complete the proof with a simple induction on n. Whenever A ∈ Q, Theorem 7
ensures that Ψ(B), Ψ(C) and Ψ(D) avoid the pattern DUD. By symmetry, the paths
Ψ(C)r and Ψ(D) avoid DUD which implies that the Grand-Dyck paths Ψ(B)Ψ(C)r

and Ψ(B)Ψ(D)r do not contain DUD. By induction, Ψ(A) belongs to M⋆
n.

Now we define some statistics and parameters on Tn, Mn and GDn, and we show
how the bijections Φ, Ψ and Φ−1 ·Ψ establish correspondences between them. Table 2
summarizes these correspondences.

For a directed animal A ∈ Tn, we set:

• Area(A) = number of points in A,

• Lw(A) = left width, i.e. max{i ≥ 0 such that the line y = x+ i meets A},

• Rw(A) = right width, i.e. max{i ≥ 1 such that the line y = x− i+ 1 meets A},

• Width(A) = Lw(A) +Rw(A) = width,

• Diag(A) = number of
×
× in A, where × means a site without point in A,

• Nbp(A, i) = number of points of A on the line y = x− i+ 1,

9



↓ Ψ

↓ Φ−1

3 4 5 5 5 5 5 6 6 8 8 8 8 12 15 16 17 17 17 19 19 19

Figure 3: Bijection Φ−1Ψ between directed animals and multisets via Grand-Dyck
paths.

For a multiset π ∈ Mn, we define δ(πi) = 0 if πi < i and 1 otherwise, and we set:

• Length(π) = n,

• Cross(π) = card{i ∈ [n− 1], δ(πi) 6= δ(πi+1)},

• Adj(π) = number of adjacencies, i.e., card{i ∈ [n− 1], such that πi+1 = πi + 1},

• Gap(π, i) = |πi − i| − ci where ci = card{j ≤ i− 1, δ(πj) 6= δ(πj+1)},
• Gap(π) = maxi∈[n]Gap(π, i).

For a Grand-Dyck path P ∈ GDn, the height h(a, b) of a point (a, b) ∈ P is the ordinate
b, and h(P ) = max{h(a, b) : (a, b) ∈ P}. Here we consider a new height function defined
by Height(a, b) = |b|− ca where ca is the number of the x-axis crossings before the line
x = a, and we set:

• Semilength(P ) = number of up-steps U ,

• Cross(P ) = number of crossings of the x-axis,

10



• Height(P ) = max(a,b)∈P Height(a, b),

• Dud(P ) = number of pattern DUD,

• Nbu(P, i) = number of U having endpoint (a, b) satisfying Height(a, b) = i+ 1.

A ∈ Tn P = Ψ(A) ∈ GDn π = Φ−1(P ) ∈ Mn

Area(A) Semilength(P ) Length(π)

Lw(A) Cross(P ) Cross(π)

Rw(A) Height(P ) Gap(π)

Width(A) Cross(P ) +Height(P ) Cross(π)+Gap(π)

Diag(A) Dud(P ) Adj(π)

Nbp(A, i) Nbu(P, i) Gap(π, i)

Table 2: Statistic correspondences by the bijections Ψ and Φ.

Theorem 9. The bijections Φ and Ψ induce correspondences between statistics as sum-
marized in Table 2.

Proof. The statistic correspondences induced by Φ are easy to check. So, we only prove
the correspondences generated by Ψ from directed animals to Grand-Dyck paths.

When A ∈ T s, we have Lw(A) = Cross(Ψ(A)) = 0. When A ∈ T \T s, A satisfies
(v) with B ∈ T s and C ∈ T . Then Lw(A) = 1 + Lw(C). We assume the recurrence
hypothesis Lw(C) = Cross(Ψ(C)), which implies Lw(A) = 1 +Cross(Ψ(C)). Using
the recursive definition of Ψ, we have Cross(Ψ(A)) = 1+Cross(Ψ(C)) which gives by
induction Lw(A) = Cross(Ψ(A)).

When A ∈ T s, it satisfies (i), (ii), (iii) or (iv), and the recursive definition of Ψ
implies that Rw(A) = h(Ψ(A)) = Height(Ψ(A)). Otherwise, if A is factorized as (v)
with B ∈ T s and C ∈ T s, then

Rw(A) = max{Rw(B),Rw(C)− 1}
= max{h(Ψ(B)),h(Ψ(C))− 1}
= max{Height(a, b), (a, b) ∈ Ψ(B)Ψ(C)r},

which is equal to Height(Ψ(A)). If A is factorized as (v) with B ∈ T s and C ∈ T \T s,
then C can be factorized as (v) with D ∈ T s and E ∈ T , and using an induction we

11



have:

Rw(A) = max{h(Ψ(B)),h(Ψ(D))− 1,Height(Ψ(E))− 2}
= max{Height(a, b), (a, b) ∈ Ψ(B)Ψ(D)rΨ(E)},

which gives exactly Height(Ψ(A)).
When A ∈ T s, it satisfies (i), (ii), (iii) or (iv), and the recursive definition of

Ψ implies that Nbp(A, i) = Nbu(Ψ(A), i). Otherwise, if A is factorized as (v) with
B ∈ T s and C ∈ T s, then Nbp(A, i) = Nbp(B, i) + Nbp(C, i + 1), and using the
recurrence hypothesis it is equal to

Nbu(Ψ(B), i) +Nbu(Ψ(C), i+ 1) = Nbu(Ψ(B)Ψ(C)r, i) = Nbu(Ψ(A), i).

Whenever A is factorized as (v) with D ∈ T s and E ∈ T , a similar argument completes
the proof.

Due to the symmetry σ about the diagonal y = x, the two statistics Lw(·) + 1 and
Rw(·) have the same distribution on directed animals in T andQ. Using Theorem 9 and
Table 2, this induces that Cross(·) + 1 and Height(·) also have the same distribution
in GD and GD⋆.
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