
EMERGING CONSECUTIVE PATTERN AVOIDANCE

NATHANAËL HASSLER AND SERGEY KIRGIZOV

Abstract. In this note we study the asymptotic popularity, that is, the limit probability to find a
given consecutive pattern at a random position in a random permutation in the eighteen classes of
permutations avoiding at least two length 3 consecutive patterns. We show that for ten classes, this
popularity can be readily deduced from the structure of permutations. By combining analytical and
bijective approaches, we study in details two more involved cases. The problem remains open for
five classes.

1. Introduction and notation

We write a permutation π ∈ Sn as a word π = a1 . . . an whose letters are {a1, . . . , an} = {1, . . . , n}.
A pattern p of length r is an element of Sr. We usually say that π contains an occurrence of the
pattern p if there exists a subsequence 1 ≤ i1 < . . . < ir ≤ n such that ai1 . . . air is order-isomorphic
to p. In this note we focus on consecutive patterns. We say that π contains a consecutive occurrence
of the pattern p if there exists a subsequence of consecutive letters aiai+1 . . . ai+r−1 of π that is
order-isomorphic to p. We say that π avoids the consecutive pattern p if it does not contain any
consecutive occurrence of p.

Kitaev [17], along with Mansour [18, 19], presented the enumeration of classes of permutations
avoiding at least two length 3 consecutive patterns. In this work, we study the asymptotic popularity,
that is, the limit probability to find a given pattern of size 3 at random position in a random
permutations in the eighteen avoidance classes from Kitaev-Mansour works. We show that, in
certain cases, some of the remaining patterns disappear asymptotically. It is a quite enchanting fact.

In the wide realm of interesting papers on permutation patterns, we would like to highlight those
that we believe are most relevant to our work. Bóna and Homberger [1, 2, 3] studied the same
problem for classical patterns (i.e. non consecutive) in classes of permutations avoiding one length 3
pattern. In particular they proved that among the permutations avoiding the classical pattern 123,
and the ones avoiding 132, the decreasing pattern 321 appears asymptotically with probability 1,
while the four other length 3 patterns disappear.

Janson [15, 16] considered limit laws for the distributions of classical (non-necessary consecutive)
patterns of length 3 in permutations avoiding classical patterns 132 and 321. Borga [6] introduced a
method based on generating trees to study asymptotic normality of consecutive pattern occurrences
in permutations avoiding certain non-necessary consecutive patterns.

Elizalde and Noy [9] presented a method based on increasing trees and box product [11] to study
distributions and avoidance of certain consecutive patterns in permutations. The same authors, in
another paper [10], showed how the Goulden-Jackson cluster method [12, 13] can be adapted to
enumerate permutations that avoid consecutive patterns.

Barnabei, Bonetti, Silimbani [5] studied joint distributions of consecutive patterns of size 3 in the
set of permutations avoiding a non-necessary consecutive pattern 312. They did this by observing
how the patterns are transformed by Krattenthaler’s bijection [14] between such permutations and
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Class
Pattern

123 132 213 231 312 321

1 (simple, Sec. 2) 1/2 1/2
2 (simple, Sec. 2) 0 1
3 (simple, Sec. 2) 1/2 1/2
4 (simple, Sec. 2) N/A N/A
5 (simple, Sec. 2) 1 0
6 (simple, Sec. 2) 1/2 1/2
7 (done in [4]) 1/2 1/2 0
8 (simple, Sec. 2) 0 0 1
9 (simple, Sec. 2) 1/2 0 1/2
10 (open) ? ? ?
11 (Section 3) 1/4 1/2 1/4
12 (open) ? ? ?
13 (open) ? ? ? ?
14 (open) ? ? ? ?
15 (open) ? ? ? ?
16 (simple, Sec. 2) 1/4 1/4 1/4 1/4
17 (Section 4) 1/4 1/2 1/4 0
18 (simple, Sec. 2) 1/2 0 0 1/2

Table 1. The asymptotic popularity patterns among eighteen avoidance classes.

Dyck paths, and how Deutsch’s involution [8] on Dyck paths helps this process. Their pattern
transfer method is similar to what Baril, Burstein and Kirgizov did in their work about faro words
and permutations [4]. Their paper is a precursor to the article you are holding in your hands.

The reverse R(π) of a permutation π = a1 . . . an is the permutation an . . . a1. The complement
C(π) is the permutation (n+1− a1) . . . (n+1− an). Also R ◦C is the composition of R and C. For
example, R(35214) = 41253, C(35214) = 31452 and R◦C(35214) = 25413. Those bijections preserve
the occurrences of consecutive patterns, indeed for T ∈ {R,C,R ◦ C}, π ∈ Sn and a consecutive
pattern p, π has an occurrence of p if and only if T (π) has an occurrence of T (p). As explained
in [17], this enables us to focus only on equivalence classes of the avoidance classes under the action
of those 3 bijections R,C and R ◦ C.

Table 1 summarizes our results, presenting eighteen classes, as they appear in [17]. In this table,
an empty cell means that corresponding patterns are avoided by design, while 0 says that the
respective pattern disappears asymptotically (the probability to find this pattern at a random
position in a random permutation tends to 0, as the permutation size grows). The values 1/2 and
1/4 present in this table should also be understood in the asymptotic sense. There are two “N/A”
for Class 4, because this class is empty for n > 3. Question marks indicate open problems.

For consecutive patterns p1, . . . , pk and n ∈ N, we denote by Avn(p1, . . . , pk) the set of permuta-
tions of size n that avoid each of the consecutive patterns p1, . . . , pk, and by Av(p1, . . . , pk) the set
of all permutations that avoid p1, . . . , pk.

Let An := Avn(p1, . . . , pm). For a pattern p ̸∈ {p1, . . . , pm}, we denote by pA
n the popularity of

the pattern p in the class An, that is, the total number of occurrences of p in An. Now we define
the asymptotic popularity of p in the class A by
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(1.1) popA(p) := lim
n→∞

pA
n

n|An|
,

when the limit exists. We will use popk, where k refers to Class k from Table 1. When it is clear
from the context, we simply write pop instead of popA,

The note is organized as follows. In Section 2 we expose some classes for which asymptotic
popularities are easily obtained. In Sections 3 and 4 we compute these popularities for two more
complex classes. The methods combine analytic arguments regarding the generating functions and a
bijective argument connecting the permutations from the class to involutions. Finally, in Section 5
we offer a conjecture and formulate several questions for future research.

2. Simple classes

In this section, we sum up the classes for which the asymptotic popularities are easily computable.
This is the case for classes 1,2,3,5,6,8,9,16 and 18 (see Table 1). Note that the problem is not
defined for Class 4, Avn(123, 132, 231, 321), since the class is empty as soon as n > 3. Class 7,
Avn(123, 132, 213), has been done by Baril, Burstein and Kirgizov [4, Remark 3.8], using a bijection
between such permutations and dispersed Dyck paths that transfers patterns between these two sets
of combinatorial objects in a nice and handy way. Their result was the original motivating point for
the present work.

Consider Class 1, Avn(123, 132, 312, 321) contains only 2 permutations when n > 1. These
permutations have a simple alternating structure shown at Figure 1. It it clear that asymptotic
popularities of the two remaining patterns are equal, pop(213) = pop(231) = 1/2.

occurrences of 213

} } }

} } }occurrences of 231

occurrences of 213

} } }

} } }

occurrences of 231

Figure 1. The only 2 permutations of Class 1, Avn(123, 132, 312, 321) for n = 8.

Class 2, Avn(123, 132, 213, 312), also contains just 2 permutations when n > 1. The pattern 231
may appear only once, at the very beginning of a permutation. After that, we observe exclusively
the occurrences of 321 (for n > 3), so pop(231) = 0 and pop(321) = 1.

Class 3, Avn(132, 213, 231, 312), for n > 1 consists of two permutations: 123 . . . n and n(n −
1) . . . 321, thus pop(123) = pop(321) = 1/2.

Class 4, Avn(123, 132, 231, 321), is empty for n > 3.
A permutation from Class 5, Avn(132, 213, 312, 321), may have at most one occurrence of pattern

231, so pop(231) = 0 and pop(123) = 1. There are n− 1 permutations in Class 5, for n > 2.
For n > 3, any permutation from Class 6, Avn(123, 132, 213, 321), is a sequence of overlaps of

two alternating patterns 231 and 312. We have pop(231) = pop(312) = 1/2.
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For n > 3, Class 8, Avn(123, 132, 231), consists of n permutations. Any permutation from this
class starts with a sequence of descents. At the end it may have one occurrence of pattern 213 or
312. It follows that pop(213) = pop(312) = 0 and pop(321) = 1.

A typical permutation from Class 9, Avn(132, 213, 231), starts with a sequence of descents,
have one occurrence of pattern 312, ends with a sequence of ascents. Permutations 123 . . . n and
n(n− 1) . . . 321 are also authorized. So, pop(123) = pop(321) = 1/2 and pop(312) = 0.

Class 16, Avn(123, 321), can be solved directly with a symmetry argument. Indeed, this class is
stable under the action of the 3 bijections R,C and R ◦C. So, any occurrence of the pattern 132 in
this class is uniquely mapped to an occurrence of 231 in the same class through R, an occurrence
of 312 through C, and an occurrence of 213 through R ◦ C. Hence pop16(132) = pop16(231) =
pop16(312) = pop16(213) = 1/4.

Let us describe in detail the case of Class 18, Avn(132, 231).

.
.
.
.

.
.
.

.
.
.
.

a1...ak1 b1...bn−k−1

.
.
.

k occurrences of 321 } occurrences of 321 } }occurrences of 123}occurrences of 123

a1...ak1 b1...bn−k−1

occurrence of 213

occurrence of 312

Figure 2. General structure of a permutation from Avn(132, 231).

As shown by Kitaev [17], in this case we have the permutations of the form a1 . . . ak1b1 . . . bn−k−1,
where a1 . . . ak is a decreasing sequence, and b1 . . . bn−k−1 an increasing sequence (see Figure 2). In
such a permutation, there are exactly k − 1 occurrences of the pattern 321 (except for k = 0, where
there is no occurrence), so

321n =
n−1∑
k=1

(
n− 1

k

)
(k − 1) = (n− 1) · 2n−2 − 2n−1 + 1.

Since length n permutations in Class 18 are enumerated by 2n−1, we have

pop18(321) = lim
n→∞

321n
n · 2n−1

=
1

2
.

Similarly we conclude that pop18(123) = 1/2, and pop18(213) = pop18(312) = 0.

3. Avoiding 123, 132 and 321

We consider the asymptotic relative popularity of the patterns 213, 231 and 312 in An :=
Avn(123, 132, 321) (Class 11 in [17]). From [17, Theorem 3], we know that

|An| = (n− 1)!! + (n− 2)!!,

where n!! is defined by 0!! = 1, and for n ≥ 1

n!! =

{
n · (n− 2) . . . 3 · 1 if n is odd,
n · (n− 2) . . . 4 · 2 if n is even.

For p ∈ {213, 231, 312} and n ∈ N, let pn denote the total number of occurrences of p in the
permutations of Avn(123, 132, 321). For n ≥ 2, there are n− 2 occurrences of a length 3 pattern in
one permutation, so we have 213n + 231n + 312n = (n− 2)|An| = (n− 2)((n− 1)!! + (n− 2)!!).
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Theorem 3.1.

231n = (n− 1)!!

⌈
n− 3

2

⌉
+ (n− 2)!!

⌈
n− 2

2

⌉
,

312n = (n−1)!!

(−1)n−1 + n− 3

4
+

1

2

n−1∑
k=1

k ̸=n mod 2

1

k

+(n−2)!!

(−1)n + n− 4

4
+

1

2

n−2∑
k=1

k=n mod 2

1

k

 ,

213n = (n− 2)((n− 1)!! + (n− 2)!!)− 231n − 312n.

Proof. From [17, Theorem 3], we know that a permutation π ∈ An is alternating or reverse
alternating, namely π = a1 . . . an with a1 > a2 < a3 . . . or a1 < a2 > a3 . . .. Moreover, for such a
permutation we have either an = 1, or an−1 = 1, and if we go from the right to the left starting
from 1 and jumping over one element, then we get an increasing sequence. Let Ar

n (resp. Al
n) be

the subset of An consisting of permutations π such that an = 1 (resp. an−1 = 1). Again from the
proof of [17, Theorem 3], we have |Ar

n| = (n− 2)!! and |Al
n| = (n− 1)!!. From the structure of those

permutations, it is easy to see that the positions of the occurrences of 231 are exactly the indexes
n− 2, n− 4, . . . , 2 or 1 for the permutations of Ar

n, and the indexes n− 3, n− 5, . . . , 2 or 1 for the
permutations of Al

n. The result on 231n follows.
Now let us consider 312n. Let 312

r
n (resp. 312ln) denote the total number of occurrences of the

consecutive pattern 312 in Ar
n (resp. Al

n).

Lemma 3.2. For any n ≥ 5,

(1) 312rn = 312ln−1,

(2) 312ln = (n− 1)(312ln−2 + (n− 3)!!)− (n− 5)!! (n−3)(n−2)
2 .

Proof. (1) follows from the fact that if π ∈ Ar
n, then the permutation induced by the n − 1 first

letters of π is in Al
n−1 (otherwise we would have an occurrence of 312 on the last 3 letters of π).

For (2) consider for 2 ≤ k ≤ n the subset Bk
n ⊂ Al

n consisting of the permutations of Al
n with k

in the last position. First assume that k > 2, and let π ∈ Bk
n. Then π = a1 . . . an−22an−31k with

a1 . . . an−3 ∈ {3, . . . , n}\{k}. The permutation π′ := a1 . . . an−22an−3 belongs to Al
n−2. We have

even that π −→ π′ is a bijection from Bk
n to Al

n−2, that preserves the number of occurrences of

312 on the first n− 2 letters. So for each occurrence of 312 in a permutation of Al
n−2, we have an

occurrence of 312 in the first n− 2 letters of a permutation of Bk
n. It remains to count the number

of occurrences of 312 in the last 4 letters of each permutation of Bk
n, that is in 2an−31k with our

notation. Note that 2an−31 can never be an occurrence of 312, and an−31k is one only if an−3 > k.
Consequently, for each permutation of Al

n−2 we have an extra occurrence of 312 in a permutation of

Bk
n that does not end by 2b1k with 3 ≤ b < k. Since there are (k − 3)|Al

n−4| such permutations,

the total number of occurrences of 312 in Bk
n is 312ln−2 + |Al

n−2| − (k − 3)|Al
n−4|. Similarly, when

k = 2, the total number of occurrences of 312 in B2
n is 312ln−2 + |Al

n−2|. We finally deduce that

312ln = 312ln−2 + |Al
n−2|+

n∑
k=3

(312ln−2 + |Al
n−2| − (k − 3)|Al

n−4|)

= (n− 1)(312ln−2 + (n− 3)!!)− (n− 5)!!
(n− 3)(n− 2)

2
.

□
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Let un := 312l
n

(n−1)!! and f(z) :=
∑∞

n=3 unz
n. From Lemma 3.2 (2) we deduce that un = un−2 + 1−

n−2
2(n−1) for any n ≥ 5. We easily derive that

f(z) =
z(2(z − 1) ln(1− z) + z3 + 3z2 − 2z)

4(1− z)2(1 + z)
,

and finally

312ln = (n− 1)!!

(−1)n−1 + n− 3

4
+

1

2

n−1∑
k=1

k ̸=n mod 2

1

k

 ,

and with Lemma 3.2 (1),

312rn = (n− 2)!!

(−1)n + n− 4

4
+

1

2

n−2∑
k=1

k=n mod 2

1

k

 .

□

Corollary 3.3. pop11(231) = 1/2, and pop11(213) = pop11(312) = 1/4.

4. Avoiding 123, 132

In [7], Claesson proved that the Foata transform induces a bijection between Avn(123, 132) and
In, the set of involutions of size n, showing in particular that |Avn(123, 132)| = |In|. Let us recall
briefly this process. An involution π ∈ In has cycles of length 1 or 2. We introduce a standard form
for writing π:

(1) Each cycle is written with its least element first.
(2) The cycles are written in decreasing order of their least element.

Denote by π̂ the permutation obtained from π by writing it in standard form and by erasing the
parentheses separating the cycles. Then π 7→ π̂ is a bijection between In and Avn(123, 132). We
will use this bijection to study the frequencies of each pattern of length 3 in Avn(123, 132), taking
advantage of some knowledge we have on the involutions. Table 2 shows the correspondence between
patterns in Avn(123, 132) and in In.

Pattern in Avn(123, 132) Pattern in In, with a < b < c Fixed point-free pattern in In
321 (c)(b)(a) or (c)(b)(a ⋆) or (⋆ c)(b)(a) ∅
231 (b c)(a) or (b c)(a ⋆) (b c)(a ⋆)
213 (b)(a c) or (⋆ b)(a c) (⋆ b)(a c)
312 (c)(a b) or (⋆ c)(a b) (⋆ c)(a b)
Table 2. The correspondence between patterns in Avn(123, 132) and In.

Example 4.1. The involution π = 732458169 ∈ I9 has standard form π = (9)(6 8)(5)(4)(2 3)(1 7),
so π̂ = 968542317 ∈ Av9(123, 132). The occurrence 854 of the pattern 321 in π̂ corresponds to the
occurrence (6 8)(5)(4) of the pattern (⋆ c)(b)(a) in π.

Lemma 4.2. Let fpn be the total number of fixed points in In. Then

fpn
|In|

∼
n→∞

√
n.
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Proof. The generating function I(z, u) such that the coefficient of znuk is the number of involutions

in In having k fixed points, divided by n!, is given by I(z, u) = ezu+z2/2. The average number of
fixed points in In is then

fpn
|In|

=
[zn]∂uI(z, u)|u=1

[zn]I(z, 1)
=

[zn−1]I(z, 1)

[zn]I(z, 1)
.

It is known, see for instance [11, 21], that

[zn]I(z, 1) ∼
n→∞

n−n/2

2
√
πn

exp

(
n

2
+
√
n− 1

4

)
,

which allows us to conclude after simplification1. □

Lemma 4.2 indicates that fixed points are quite rare within the involutions. Consequently, in
order to compute the number of occurrences of a pattern in Avn(123, 132), it suffices to compute
the number of occurrences of the corresponding fixed point-free pattern in In.

Lemma 4.3. Let α := (b c)(a ⋆), β := (⋆ b)(a c) and γ := (⋆ c)(a b) be the three consecutive
fixed point-free patterns of size 3 in In, and let respectively αn, βn and γn denote their number of
occurrences in In. Then pop17(321) = 0,

pop17(231) = lim
n→∞

αn

n|In|
, pop17(213) = lim

n→∞

βn

n|In|
, and pop17(312) = lim

n→∞

γn

n|In|
.

Proof. Let δn be the total number of occurrences of a pattern admitting a fixed point in In. In order
to prove the lemma, it suffices to show that lim

n→∞
δn/(n|In|) = 0. Since each fixed point appears in 3

different occurrences of a pattern, we have δn ≤ 3 · fpn. The result follows from Lemma 4.2. □

Proposition 4.4. pop17(321) = 0 and pop17(231) = 1/2.

Proof. The first statement has been proved in Lemma 4.3. For the second one, Lemma 4.3 indicates
that it suffices to compute the popularity of the pattern α among the fixed point-free patterns
in In. Such a pattern consists of 2 consecutive transpositions. But for each pair of consecutive
transpositions in a permutation of In, we have exactly one occurrence of the pattern α, and one
occurrence of β or γ. Thus, the popularity of α among fixed point-free patterns in In is 1

2 , which
finishes the proof. □

Now let us focus on the pattern 213. By Lemma 4.3, it suffices to estimate the popularity of
the pattern (⋆ b)(a c) in the involutions. By definition of the Foata transform, such an occurrence
is necessarily of the form (b c)(a d), with a < b < c < d. In Av(123, 132), it corresponds to an
occurrence of the pattern 2314. Therefore we compute the exponential generating function of 2314n,
the number of occurrences of 2314 in Avn(123, 132).

Lemma 4.5. 23144 = 1, 23145 = 4, and for all n ≥ 6,

2314n = 2314n−1 + (n− 1)2314n−2 +

(
n− 2

2

)
|In−4|.

Proof. It is easy to see that each permutation in Class 17 has 1 in either the first (type 1) or
the second (type 2) position from the right. The number of occurrences of 2314 in each type 1
permutation of size n is exactly 2314n−1. Let π ∈ Avn(123, 132) of type 2. Then π = a1 . . . an−21k
for some k ∈ {2, . . . , n}, and a1 . . . an−2 ∈ Avn−2(123, 132). This is in fact a bijection between the
type 2 permutations of Avn(123, 132) ending with k and Avn−2(123, 132). So for each occurrence of

1See also Michael Lugo’s blog post
http://godplaysdice.blogspot.com/2008/02/how-many-fixed-points-do-involutions.html
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2314 in a permutation of Avn−2(123, 132), we have n−1 occurrences of 2314 in a type 2 permutation
of Avn(123, 132). However, occurrences can also appear on the last positions of type 2 permutations.
Indeed, there is one more occurrence for each permutation ending with 2i1k, for 3 ≤ i < k ≤ n, and
there are

(
n−2
2

)
|In−4| such permutations. In the end, we obtain the desired formula. □

Proposition 4.6. Let G(z) =
∑+∞

n=4
2314n

n! zn be the EGF of (2314n)n≥4. Then

G(z) =
e

(1+z)2

2

2

∫ z

0
e−

(1+t)2

2 dt+
z(z − 2)ez+

z2

2

4
.

Proof. From Lemma 4.5 we can verify that G satisfies the following Cauchy problem:{
G′′(z)− (1 + z)G′(z)−G(z) = z2

2 e
z+ z2

2 ,
G(0) = G′(0) = 0.

Note that ez+
z2

2 is the EGF of (|In|)n≥0. Solving this differential equation, we get that its only
solution is the one stated in the lemma. □

Corollary 4.7. pop17(312) = pop17(213) = 1/4.

Proof. We proceed in two steps. First we prove that [zn]z(z−2)ez+
z2

2 ∼ n|In|
n! , and secondly we show

that [zn]

(
e

(1+z)2

2

∫ z
0 e−

(1+t)2

2 dt

)
= o

(
n|In|
n!

)
. Those two facts prove that [zn]G(z) ∼ n|In|

4·n! , and so

pop17(2314) = pop17(213) = 1/4. By Proposition 4.4 we then have by deduction pop17(312) = 1/4.
For the first point, we already know (see for instance [11, 21]) that

[zn]ez+
z2

2 =
|In|
n!

∼
n→∞

n−n/2

2
√
πn

exp

(
n

2
+
√
n− 1

4

)
.

We deduce after simplification that

|In−1|
(n− 1)!

∼ n−n/2

2
√
π

exp

(
n

2
+
√
n− 1

4

)
, and

|In−2|
(n− 2)!

∼
√
n · n−n/2

2
√
π

exp

(
n

2
+
√
n− 1

4

)
.

Consequently,

[zn]z(z − 2)ez+
z2

2 =
|In−2|
(n− 2)!

− 2
|In−1|
(n− 1)!

∼
√
n · n−n/2

2
√
π

exp

(
n

2
+
√
n− 1

4

)
∼ n|In|

n!
,

which proves the first point. For the second one, let us start by studying the coefficients of the other
term of G(z).

Lemma 4.8. Let F (z) = e
(1+z)2

2

∫ z
0 e−

(1+t)2

2 dt. Then for all n ≥ 0, [zn]F (z) ∈ 1
n! · N.

Proof. F satisfies the following equality: F ′(z) = (1 + z)F (z) + 1. Then, with a direct induction,
there exist two polynomials pn, qn ∈ N[z], with deg(pn) = n and deg(qn) = n − 1 such that

F (n)(z) = pn(z)F (z) + qn(z). Since F (0) = 0, we have F (n)(0) ∈ N, and as [zn]F (z) = F (n)(0)
n! , the

result follows. □

Remark 4.9. F ′(z) is the EGF of the sequence A000932 in OEIS [20].

Lemma 4.8 ensures the positivity of the coefficients of F (z). We can then apply a saddle point
bound to F (see [11, Corollary VIII.1]). Indeed, by the positivity, F (z)z−n−1 has a unique saddle
point ζ defined by

(4.1) ζ
F ′(ζ)

F (ζ)
= n+ 1, or equivalently

ζ

F (ζ)
= n+ 1− ζ − ζ2,

8
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and then

(4.2) [zn]F (z) ≤ F (ζ)

ζn
.

Given the saddle point equation (4.1), it seems out of reach to obtain an exact expression of ζ.
However, the saddle point is the value minimizing the right-hand term in (4.2), and since we just
look for a good enough upper bound on [zn]F (z), a nice approximation of the saddle point may
yield a sufficient bound. It turns out that choosing ζ =

√
n is sufficient. The upper bound (4.2)

then becomes

[zn]F (z) ≤
e

(1+
√
n)2

2

∫ √
n

0 e−
(1+t)2

2 dt

(
√
n)n

≤
(∫ +∞

0
e−t− t2

2 dt

)
· n−n/2 · exp

(n
2
+
√
n
)
.

This is indeed enough to prove that [zn]F (z) = o
(√

n · n−n/2 · exp
(
n
2 +

√
n
))

= o
(
n|In|
n!

)
. □

5. Open questions

The conjecture, presented below, is true for cases solved in our work. Is it true in general case?

Conjecture 5.1. For m > 0, denote by p1, . . . , pk, p certain consecutive patterns of length m. Let
An = Avn(p1, . . . , pk) and Bn = Avn(p1, . . . , pk, p). Suppose that popA(p) = 0, then for every
consecutive pattern q of length m we have popB(q) = popA(q).

It may also be interesting to answer the following questions:

(1) How to solve Classes 10, 12, 13, 14 and 15 using an enumerative or probabilistic approach?
Our numerical experiments suggest that the convergence rate appears to be quite low to
formulate plausible conjectures about these cases.

(2) What happens when we avoid only one consecutive pattern of size 3?
(3) Can we find a set of patterns, avoiding which we will obtain irrational asymptotic popularity

for some remaining pattern?
(4) Does the limit (1.1) always exist? If not, can we characterize patterns for which this limit

exists?
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