EMERGING CONSECUTIVE PATTERN AVOIDANCE

NATHANAEL HASSLER AND SERGEY KIRGIZOV

ABSTRACT. In this note we study the asymptotic popularity, that is, the limit probability to find a
given consecutive pattern at a random position in a random permutation in the eighteen classes of
permutations avoiding at least two length 3 consecutive patterns. We show that for ten classes, this
popularity can be readily deduced from the structure of permutations. By combining analytical and
bijective approaches, we study in details two more involved cases. The problem remains open for
five classes.

1. INTRODUCTION AND NOTATION

We write a permutation 7 € S,, as a word ™ = a; ... a, whose letters are {a1,...,a,} = {1,...,n}.
A pattern p of length r is an element of S,. We usually say that m contains an occurrence of the
pattern p if there exists a subsequence 1 < i) < ... <14, < n such that a;, ...a;, is order-isomorphic
to p. In this note we focus on consecutive patterns. We say that 7 contains a consecutive occurrence
of the pattern p if there exists a subsequence of consecutive letters a;a;41 ... a;+r—1 of ™ that is
order-isomorphic to p. We say that m avoids the consecutive pattern p if it does not contain any

consecutive occurrence of p.

Kitaev [17], along with Mansour [I8], [19], presented the enumeration of classes of permutations
avoiding at least two length 3 consecutive patterns. In this work, we study the asymptotic popularity,
that is, the limit probability to find a given pattern of size 3 at random position in a random
permutations in the eighteen avoidance classes from Kitaev-Mansour works. We show that, in
certain cases, some of the remaining patterns disappear asymptotically. It is a quite enchanting fact.

In the wide realm of interesting papers on permutation patterns, we would like to highlight those
that we believe are most relevant to our work. Béna and Homberger [I, 2] [3] studied the same
problem for classical patterns (i.e. non consecutive) in classes of permutations avoiding one length 3
pattern. In particular they proved that among the permutations avoiding the classical pattern 123,
and the ones avoiding 132, the decreasing pattern 321 appears asymptotically with probability 1,
while the four other length 3 patterns disappear.

Janson [I5, [16] considered limit laws for the distributions of classical (non-necessary consecutive)
patterns of length 3 in permutations avoiding classical patterns 132 and 321. Borga [6] introduced a
method based on generating trees to study asymptotic normality of consecutive pattern occurrences
in permutations avoiding certain non-necessary consecutive patterns.

Elizalde and Noy [9] presented a method based on increasing trees and box product [I1] to study
distributions and avoidance of certain consecutive patterns in permutations. The same authors, in
another paper [10], showed how the Goulden-Jackson cluster method [12, [13] can be adapted to
enumerate permutations that avoid consecutive patterns.

Barnabei, Bonetti, Silimbani [5] studied joint distributions of consecutive patterns of size 3 in the
set of permutations avoiding a non-necessary consecutive pattern 312. They did this by observing
how the patterns are transformed by Krattenthaler’s bijection [14] between such permutations and
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Pattern | 193 | 132 | 213 | 231 312 | 321
Class
1 (simple, Sec. |2 1/2 1 1/2
2 (simple, Sec. |2 0 1
3 (simple, Sec.[2) | 1/2 1/2
4 (simple, Sec. [2 N/A N/A
5 (simple, Sec. |2 1 0
6 (simple, Sec. |2 1/2] 1/2
7 (done in [4]) /2] 1/2 ] 0
8 (simple, Sec. |2 0 0 1
9 (simple, Sec. |2 1/2 0 |1/2
10 (open) ? ? ?
11 (Section [3) 1/4 [1/2] 1/4
2 (open) ? ?
3 (open) ? ? ? ?
4 (open) ? ? ? ?
5 (open) ? T 7 | 7
16 (simple, Sec. [2 1/4] 1/4 [1/4] 1/4
17 (Section [4) 1/4 11/211/4 | 0
18 (simple, Sec.|2) [ 1/2 0 0 |1/2

TABLE 1. The asymptotic popularity patterns among eighteen avoidance classes.

Dyck paths, and how Deutsch’s involution [8] on Dyck paths helps this process. Their pattern
transfer method is similar to what Baril, Burstein and Kirgizov did in their work about faro words
and permutations [4]. Their paper is a precursor to the article you are holding in your hands.

The reverse R(m) of a permutation m = aj ...a, is the permutation a,, ...a;. The complement
C(m) is the permutation (n+1—aq)...(n+1—ay,). Also RoC is the composition of R and C. For
example, R(35214) = 41253, C'(35214) = 31452 and Ro(C(35214) = 25413. Those bijections preserve
the occurrences of consecutive patterns, indeed for 7' € {R,C, Ro C}, m € §,, and a consecutive
pattern p, m has an occurrence of p if and only if T'(r) has an occurrence of T'(p). As explained
n [I7], this enables us to focus only on equivalence classes of the avoidance classes under the action
of those 3 bijections R, and Ro C.

Table |1| summarizes our results, presenting eighteen classes, as they appear in [I7]. In this table,
an empty cell means that corresponding patterns are avoided by design, while 0 says that the
respective pattern disappears asymptotically (the probability to find this pattern at a random
position in a random permutation tends to 0, as the permutation size grows). The values 1/2 and
1/4 present in this table should also be understood in the asymptotic sense. There are two “N/A”
for Class 4, because this class is empty for n > 3. Question marks indicate open problems.

For consecutive patterns pi,...,pr and n € N, we denote by Av,(p1,...,px) the set of permuta-
tions of size n that avoid each of the consecutive patterns pi, ..., pg, and by Av(py,...,px) the set
of all permutations that avoid py, ..., px.

Let A, := AV, (p1,...,pm). For a pattern p & {p1,...,pm}, we denote by p:* the popularity of
the pattern p in the class A,, that is, the total number of occurrences of p in A,,. Now we define

the asymptotic popularity of p in the class A by
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p.A
1.1 POP = lim ——"—
when the limit exists. We will use POPg, where k refers to Class k from Table [I, When it is clear
from the context, we simply write POP instead of POP 4,

The note is organized as follows. In Section [2| we expose some classes for which asymptotic
popularities are easily obtained. In Sections [3| and 4] we compute these popularities for two more
complex classes. The methods combine analytic arguments regarding the generating functions and a
bijective argument connecting the permutations from the class to involutions. Finally, in Section
we offer a conjecture and formulate several questions for future research.

2. SIMPLE CLASSES

In this section, we sum up the classes for which the asymptotic popularities are easily computable.
This is the case for classes 1,2,3,5,6,8,9,16 and 18 (see Table . Note that the problem is not
defined for Class 4, Av,, (123,132,231, 321), since the class is empty as soon as n > 3. Class 7,
Av,,(123,132,213), has been done by Baril, Burstein and Kirgizov [4, Remark 3.8], using a bijection
between such permutations and dispersed Dyck paths that transfers patterns between these two sets
of combinatorial objects in a nice and handy way. Their result was the original motivating point for
the present work.

Consider Class 1, Av,(123,132,312,321) contains only 2 permutations when n > 1. These
permutations have a simple alternating structure shown at Figure [1} It it clear that asymptotic
popularities of the two remaining patterns are equal, POP(213) = POoP(231) = 1/2.

occurrences of 231 occurrences of 231
——— ———
—— —— —— ——
] ]
[ ) [ )
[ ] [ ]
[ ) ]
[ ) [ ]
[ ] [ ]
[ ] ]
[ ) [ )
—— - —_—
— - .
occurrences of 213 occurrences of 213

FIGURE 1. The only 2 permutations of Class 1, Av, (123,132,312, 321) for n = 8.

Class 2, Av,(123,132,213,312), also contains just 2 permutations when n > 1. The pattern 231
may appear only once, at the very beginning of a permutation. After that, we observe exclusively
the occurrences of 321 (for n > 3), so POP(231) = 0 and POP(321) = 1.

Class 3, Av,,(132,213,231,312), for n > 1 consists of two permutations: 123...n and n(n —
1)...321, thus Pop(123) = POP(321) = 1/2.

Class 4, Av,, (123,132,231, 321), is empty for n > 3.

A permutation from Class 5, Av,, (132,213,312, 321), may have at most one occurrence of pattern
231, so POP(231) = 0 and POP(123) = 1. There are n — 1 permutations in Class 5, for n > 2.

For n > 3, any permutation from Class 6, Av,, (123,132,213, 321), is a sequence of overlaps of
two alternating patterns 231 and 312. We have pop(231) = popr(312) = 1/2.
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For n > 3, Class 8, Av,,(123,132,231), consists of n permutations. Any permutation from this
class starts with a sequence of descents. At the end it may have one occurrence of pattern 213 or
312. Tt follows that poP(213) = POP(312) = 0 and POP(321) = 1.

A typical permutation from Class 9, Av,,(132,213,231), starts with a sequence of descents,
have one occurrence of pattern 312, ends with a sequence of ascents. Permutations 123...n and
n(n —1)...321 are also authorized. So, pOP(123) = poP(321) = 1/2 and POP(312) = 0.

Class 16, Av,,(123,321), can be solved directly with a symmetry argument. Indeed, this class is
stable under the action of the 3 bijections R,C' and R o C. So, any occurrence of the pattern 132 in
this class is uniquely mapped to an occurrence of 231 in the same class through R, an occurrence
of 312 through C, and an occurrence of 213 through R o C. Hence POP14(132) = POP14(231) =
POP16(312) = POP16(213) = 1/4

Let us describe in detail the case of Class 18, Av,,(132,231).

occurrences of 123 occurrences of 123
k occurrences of 321 ———— occurrences of 321 ————
— —
. . ’ occurrence of 213 : .
) // . ° )
s occurrence of 312 <
a1...aklbl...bn_k_1 al...aklbl...bn_k_l

FIGURE 2. General structure of a permutation from Av,,(132,231).

As shown by Kitaev [17], in this case we have the permutations of the form a; ... aglby ...b,_g_1,
where a; ...ay is a decreasing sequence, and b; ...b,_j_1 an increasing sequence (see Figure . In
such a permutation, there are exactly & — 1 occurrences of the pattern 321 (except for £ = 0, where
there is no occurrence), so

Kk gy |
321n:2( N ><k—1)=<n—1)~2"—2—2"—1+1.
k=1

Since length n permutations in Class 18 are enumerated by 2"~!, we have

. 321, 1
Similarly we conclude that POP;g(123) = 1/2, and POP13(213) = POP;5(312) = 0.

3. AVOIDING 123, 132 AND 321

We consider the asymptotic relative popularity of the patterns 213, 231 and 312 in A, :=
Av,,(123,132,321) (Class 11 in [I7]). From [I7, Theorem 3], we know that

|An| = (n— DI 4 (n — 2)!1,
where n!! is defined by O!! =1, and for n > 1
" n-(n—2)...3-1 ifnis odd,
n!l = e
n-(n—2)...4-2 if nis even.

For p € {213,231,312} and n € N, let p,, denote the total number of occurrences of p in the
permutations of Av,,(123,132,321). For n > 2, there are n — 2 occurrences of a length 3 pattern in
one permutation, so we have 213,, + 231,, + 312,, = (n — 2)|A,| = (n — 2)((n — 1)!I + (n — 2)!1).
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Theorem 3.1.

231, = (n— ! [n;ﬂ + (n —2)! [”;ﬂ ,

n—1

-2

(- t4+n-3 1 1 ()" +n—-4 1 1

312, = (n—1)! = - oy f =2 .- E: -

n=(n=1) 4 T3 ; P R 1 T3 Zak
k#n mod 2 k=n mod 2

213, = (n—2)((n — D' + (n — 2)!I!) — 231, — 312,,.

Proof. From [17, Theorem 3], we know that a permutation © € A, is alternating or reverse
alternating, namely m = aj ...a, with a1 > a2 < as... or a; < az > as.... Moreover, for such a
permutation we have either a, = 1, or a,—1 = 1, and if we go from the right to the left starting
from 1 and jumping over one element, then we get an increasing sequence. Let A7 (resp. A) be
the subset of A,, consisting of permutations 7 such that a, =1 (resp. a,—1 = 1). Again from the
proof of [I7, Theorem 3], we have |A”| = (n — 2)!! and |A}| = (n — 1)!!. From the structure of those
permutations, it is easy to see that the positions of the occurrences of 231 are exactly the indexes
n—2,n—4,...,2or 1 for the permutations of AJ, and the indexes n —3,n —5,...,2 or 1 for the
permutations of A!. The result on 231,, follows.

Now let us consider 312,. Let 3127 (resp. 312.) denote the total number of occurrences of the
consecutive pattern 312 in A7 (resp. Al).

Lemma 3.2. For any n > 5,
(1) 3127 = 312!,

(2) 312}, = (n — 1)(812],_, + (n — 3)!1) — (n — 5)1 (2=3)n=2)

Proof. (1) follows from the fact that if 7 € A, then the permutation induced by the n — 1 first

letters of 7 is in AL_; (otherwise we would have an occurrence of 312 on the last 3 letters of 7).

For (2) consider for 2 < k < n the subset BX C Al consisting of the permutations of Al with k
in the last position. First assume that & > 2, and let 7w € Bﬁ. Then m = ay ...an_22a,_31k with
ai...an—3 € {3,...,n}\{k}. The permutation 7’ := a; ...a,_22a,_3 belongs to Al ,. We have
even that 7 — 7’ is a bijection from B to Afz—27 that preserves the number of occurrences of
312 on the first n — 2 letters. So for each occurrence of 312 in a permutation of A!,_,, we have an
occurrence of 312 in the first n — 2 letters of a permutation of BY. It remains to count the number

of occurrences of 312 in the last 4 letters of each permutation of Bﬁ, that is in 2a,_31k with our

notation. Note that 2a,_31 can never be an occurrence of 312, and a,,_31k is one only if a,,_3 > k.

Consequently, for each permutation of Aln_2 we have an extra occurrence of 312 in a permutation of
BE that does not end by 2b1k with 3 < b < k. Since there are (k — 3)| Al _,| such permutations,
the total number of occurrences of 312 in BY is 312! , + Al _,| — (k — 3)|AL_,|. Similarly, when
k = 2, the total number of occurrences of 312 in B2 is 312! _, +|A!_,|. We finally deduce that

n
312), = 312}, , + |4} o[+ 2(312272 + AL o = (k= 3)| AL _4])
k=3

=(n—1)(312,_5+ (n—=3)!1) — (n — 5)1!(”_3)2(”_2)'
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Let uy, := % and f(z) =Y 2 supz". From Lemma (2) we deduce that u, = up—2+1—
2(’;”17121) for any n > 5. We easily derive that
2(2(z — D) In(1 — 2) + 23 + 322 — 22)
4(1—2)2(1+2) ’

f(z) =
and finally

-1

(- 14+n-3 1 ¥ 1

3120 = (n—1)!! =D -
k#n “mod 2

and with Lemma [3.2] (1),

3

-2
i 1
312, = (n -2 | ————+ 3 kz_: -

=1
k=n mod 2

Corollary 3.3. popr;;(231) = 1/2, and pOP;;(213) = POP11(312) = 1/4.

4. AvOIDING 123, 132

In [7], Claesson proved that the Foata transform induces a bijection between Av,,(123,132) and
Z,, the set of involutions of size n, showing in particular that |Av,(123,132)| = |Z,|. Let us recall
briefly this process. An involution 7 € Z,, has cycles of length 1 or 2. We introduce a standard form
for writing m:

(1) Each cycle is written with its least element first.
(2) The cycles are written in decreasing order of their least element.

Denote by 7 the permutation obtained from 7 by writing it in standard form and by erasing the
parentheses separating the cycles. Then 7w — 7 is a bijection between Z,, and Av,,(123,132). We
will use this bijection to study the frequencies of each pattern of length 3 in Av,,(123,132), taking
advantage of some knowledge we have on the involutions. Table [2] shows the correspondence between
patterns in Av,,(123,132) and in Z,.

Pattern in Av,,(123,132) Pattern in Z,, with a < b < ¢ Fixed point-free pattern in Z,
321 (c)(b)(a) or (c)(b)(a *) or (x ¢)(b)(a) 0
231 (bc)(a) or (be)(a *) (bc)(a %)
213 (b)(a c) or (xb)(ac) (xb)(ac)
312 (c)(ab) or (xc)(ab) (xc)(abd)
TABLE 2. The correspondence between patterns in Av,,(123,132) and Z,

Example 4.1. The involution m = 732458169 € Zy has standard form m = (9)(6 8)(5)(4)(2 3)(1 7),
so T = 968542317 € Avg(123,132). The occurrence 85/ of the pattern 321 in 7 corresponds to the
occurrence (6 8)(5)(4) of the pattern (x ¢)(b)(a) in 7.

Lemma 4.2. Let ¥P,, be the total number of fized points in Z,,. Then
FP,,
|Z,,| n—oo
6
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Proof. The generating function I(z,u) such that the coefficient of z"u* is the number of involutions

2u+z

in Z,, having k fixed points, divided by n!, is given by I(z,u) =e °/2, The average number of

fixed points in Z,, is then
FPp,  [2"0ud(z,u)|u=1  [z""1I(2,1)

. (1) (1)

It is known, see for instance [11}, 21], that

n—n/? n 1
n:oo 2\/7T7’L xp <2 + \/;7 4> ’

which allows us to conclude after simpliﬁcationﬂ O

(2" (z,1)

Lemma indicates that fixed points are quite rare within the involutions. Consequently, in
order to compute the number of occurrences of a pattern in Av,,(123,132), it suffices to compute
the number of occurrences of the corresponding fixed point-free pattern in Z,.

Lemma 4.3. Let a := (b ¢)(a %), B := (x b)(a ¢) and v := (x ¢)(a b) be the three consecutive

fized point-free patterns of size 3 in I,,, and let respectively o, B,, and 7y, denote their number of

occurrences in L,. Then POP17(321) =0,
o,

_ o On — iy Pn
POP17(231) = nIL%n|In’ , POP17(213) nh%ngon|zn| s

. Tn
and POP17(312) = lim .
17( ) naoon|In|
Proof. Let §,, be the total number of occurrences of a pattern admitting a fixed point in Z,. In order
to prove the lemma, it suffices to show that lim 4,,/(n|Z,|) = 0. Since each fixed point appears in 3
n—oo

different occurrences of a pattern, we have §,, < 3 - FP,,. The result follows from Lemma [4.2 ]
Proposition 4.4. pOP;7(321) = 0 and POP17(231) = 1/2.

Proof. The first statement has been proved in Lemma For the second one, Lemma [4.3] indicates
that it suffices to compute the popularity of the pattern a among the fixed point-free patterns
in Z,,. Such a pattern consists of 2 consecutive transpositions. But for each pair of consecutive
transpositions in a permutation of Z,,, we have exactly one occurrence of the pattern a, and one
. . . .1 .
occurrence of B or . Thus, the popularity of a among fixed point-free patterns in Z,, is 5, which
finishes the proof. ([l

Now let us focus on the pattern 213. By Lemma {4.3] it suffices to estimate the popularity of
the pattern (x b)(a ¢) in the involutions. By definition of the Foata transform, such an occurrence
is necessarily of the form (b ¢)(a d), with a < b < ¢ < d. In Av(123,132), it corresponds to an
occurrence of the pattern 2314. Therefore we compute the exponential generating function of 2314,,,
the number of occurrences of 2314 in Av,,(123,132).

Lemma 4.5. 2314, = 1, 23145 = 4, and for all n > 6,
— 2
2314, = 2314, _1 + (n — 1)2314,_5 + (n ) )\In_4\.

Proof. It is easy to see that each permutation in Class 17 has 1 in either the first (type 1) or
the second (type 2) position from the right. The number of occurrences of 2314 in each type 1
permutation of size n is exactly 2314,,_1. Let m € Av,,(123,132) of type 2. Then 7 =a; ...ap—21k
for some k € {2,...,n}, and a1 ...a,—2 € Av,_2(123,132). This is in fact a bijection between the
type 2 permutations of Av,(123,132) ending with k and Av,,_2(123,132). So for each occurrence of

1See also Michael Lugo’s blog post
http://godplaysdice.blogspot.com/2008/02/how-many-fixed-points-do-involutions.html
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2314 in a permutation of Av,,_5(123,132), we have n — 1 occurrences of 2314 in a type 2 permutation
of Av,,(123,132). However, occurrences can also appear on the last positions of type 2 permutations.
Indeed, there is one more occurrence for each permutation ending with 21k, for 3 <1i < k <n, and
there are ("52) |Z,—4| such permutations. In the end, we obtain the desired formula. O

Proposition 4.6. Let G(z) = Y > 2214527 pe the EGF of (2314,)n>4. Then

e(HQZ)Q 2 a4n? z(z—2)ez+é
G(z) = 5 /Oe_ 2 dt—i—f.

Proof. From Lemma [£.5] we can verify that G satisfies the following Cauchy problem:

{ G"(2) — (14 2)0(2) — G(z) = 27,
G(0) = G'(0) = 0.

22
Note that e**7 is the EGF of (|Z,|)n>0. Solving this differential equation, we get that its only
solution is the one stated in the lemma. 0

Corollary 4.7. popr;7(312) = POP17(213) = 1/4.

22
Proof. We proceed in two steps. First we prove that [2"]z(z —2)e*T 7 ~ M , and secondly we show

that | < Qsa” Iy e — =o0 (%) Those two facts prove that [2"]G(z) ~ nﬂ"‘ , and so

POP17(2314) = POP17(213) = 1/4. By Proposition [4.4] we then have by deduction POP17(312) = 1/4.
For the first point, we already know (see for instance [I1}, 21]) that

n z+£ ‘I ‘ 7n/2
et =Bl e (v g).

We deduce after simplification that

|Zp—1] n~"/? n 1 |Z—2] Vn-n 2 n 1
-1l " 2w P p tVn-g ), and (n—2)! o/m T p Vg )

Consequently,
2 T, s Z,1|  /n-n"? n 1 n|Z,|
n -9 zZ+ — ‘ n—2 -9 n ~ — — =] ~
7"z = 2)e -2l oy PlatVrog) T
which proves the first point. For the second one, let us start by studying the coefficients of the other
term of G(z).

[

( +Z)

Lemma 4.8. Let F(z) NG
Proof. F satisfies the following equality: F'(z) = (1 + z)F(z) + 1. Then, with a direct induction,
there exist two polynomials p,,q, € N[z], with deg(p,) = n and deg(g,) = n — 1 such that
F)(2) = po(2)F(2) + gn(2). Since F(0) = 0, we have F()(0) € N, and as [z"]F(z) = L@ the

result follows. g

Remark 4.9. F'(z) is the EGF of the sequence A000932 in OEIS [20].

Lemma ensures the positivity of the coefficients of F'(z). We can then apply a saddle point
bound to F (see [L1, Corollary VIIIL.1]). Indeed, by the positivity, F/(z)2~""! has a unique saddle
point ¢ defined by

(4.1) ¢

(1+t>

dt. Then for alln >0, [z"]F(z) € & -N.

n!

F'(¢)

_ 2
F(O) =ntl-e=G

=n+ 1, or equivalently FEC)
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and then

F(¢)
(4.2) [2"|F(2) < o
Given the saddle point equation (4.1)), it seems out of reach to obtain an exact expression of (.
However, the saddle point is the value minimizing the right-hand term in (4.2)), and since we just
look for a good enough upper bound on [2"]|F(z), a nice approximation of the saddle point may
yield a sufficient bound. It turns out that choosing ¢ = y/n is sufficient. The upper bound (4.2)
then becomes

<1+f> (1+t>2

e
(\/77)"

+o0 2
—t-i —n/2 n
e ""adt) -n cexp (= ++vn).

This is indeed enough to prove that [2"]F(z) = o (y/n-n"2 exp (% +/n)) = ( niZ, ) O

[2"]F(2)

| /\

IN

5. OPEN QUESTIONS
The conjecture, presented below, is true for cases solved in our work. Is it true in general case?

Conjecture 5.1. For m > 0, denote by p1,...,pk,p certain consecutive patterns of length m. Let
A, = Avy(pi,...,px) and By, = Av,(p1,...,pk,p). Suppose that POP4(p) = 0, then for every
consecutive pattern q of length m we have POPg(q) = POP4(q).

It may also be interesting to answer the following questions:

(1) How to solve Classes 10, 12, 13, 14 and 15 using an enumerative or probabilistic approach?
Our numerical experiments suggest that the convergence rate appears to be quite low to
formulate plausible conjectures about these cases.

(2) What happens when we avoid only one consecutive pattern of size 37

(3) Can we find a set of patterns, avoiding which we will obtain irrational asymptotic popularity
for some remaining pattern?

(4) Does the limit always exist? If not, can we characterize patterns for which this limit
exists?
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