Transformation à la Foata for Special Kinds of Descents and Excedances

Jean-Luc Baril and Sergey Kirgizov
LIB, Université Bourgogne Franche-Comté, B.P. 47 870, 21078 Dijon-Cedex, France
Email: barjl@u-bourgogne.fr, sergey.kirgizov@u-bourgogne.fr

Received: January 6, 2021, Accepted: March 17, 2021, Published: March 26, 2021
The authors: Released under the CC BY-ND license (International 4.0)

Abstract

A pure excedance in a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ is a position $i<\pi_{i}$ such that there is no $j<i$ with $i \leq \pi_{j}<\pi_{i}$. We present a one-to-one correspondence on the symmetric group that transports pure excedances to descents of a special kind. As a byproduct, we prove that the popularity of pure excedances equals those of pure descents on permutations, while their distributions are different.

Keywords: Cycle; Descent; Distribution; Excedance; Permutation; Popularity; Statistic
2020 Mathematics Subject Classification: 05A05; 05A15; 05A19

1. Introduction and notations

The distribution of the number of descents has been widely studied on several classes of combinatorial objects such as permutations [14], cycles [7, 8], and words [3,10]. Many interpretations of this statistic appear in several fields as Coxeter groups $[4,11]$ or lattice path theory [12]. One of the most famous result involves the Foata fundamental transformation [9] to establish a one-to-one correspondence between descents and excedances on permutations. This bijection provides a more straightforward proof than those of MacMahon [14] for the equidistribution of these two Eulerian statistics.

In this paper, we present a bijection à la Foata on the symmetric group that exchanges pure excedances with special kind of descents defined as a mesh pattern $p_{2}[6]$ (see below for the definition of this pattern). Then, we deduce that the popularities (but not the distributions) of pure descents [2] and pure excedances are the same. This common popularity is given by the generalized Stirling number $n!\cdot\left(H_{n}-1\right)$ (see Sequence A001705 in [15]) where $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is the nth harmonic number. Finally, we conjecture the existence of a bijection on the symmetric group that exchanges pure excedances and p_{2} while preserving the number of cycles.

Let S_{n} be the set of permutations of length n, i.e., all bijections from $[n]=\{1,2, \ldots, n\}$ into itself. The one-line representation of a permutation $\pi \in S_{n}$ is $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ where $\pi_{i}=\pi(i), 1 \leq i \leq n$. For $\sigma \in S_{n}$, the product $\sigma \cdot \pi$ is the permutation $\sigma\left(\pi_{1}\right) \sigma\left(\pi_{2}\right) \ldots \sigma\left(\pi_{n}\right)$. A ℓ-cycle $\pi=\left\langle i_{1}, i_{2}, \ldots, i_{\ell}\right\rangle$ in S_{n} is a n-length permutation satisfying $\pi\left(i_{1}\right)=i_{2}, \pi\left(i_{2}\right)=i_{3}, \ldots, \pi\left(i_{\ell-1}\right)=i_{\ell}, \pi\left(i_{\ell}\right)=i_{1}$ and $\pi(j)=j$ for $j \in[n] \backslash\left\{i_{1}, i_{2}, \ldots, i_{\ell}\right\}$. For $1 \leq k \leq n$, we denote by $C_{n, k}$ the set of all n-length permutations admitting a decomposition in a product of k disjoint cycles. The set $C_{n, k}$ is counted by the signless Stirling numbers of the first kind $c(n, k)$ defined by

$$
c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1)
$$

where $c(n, k)=0$ if $n=0$ or $k=0$, except $c(0,0)=1$ (see [16, 17] and Sequence A132393 in [15]). These numbers also enumerate n-length permutations π having k left-to-right maxima, i.e., positions $i \in[n]$ such that $\pi_{j}<\pi_{i}$ for $j<i$ (see [16]), and permutations $\pi \in S_{n}$ with $k-1$ pure descents, i.e., descents $\pi_{i}>\pi_{i+1}$ where there is no $j<i$ such that $\pi_{j} \in\left[\pi_{i+1}, \pi_{i}\right]$ (see [2]). Note that a pure descent can be viewed as an occurrence of the mesh pattern $\left(21, L_{1}\right)$ where $L_{1}=\{1\} \times[0,2] \cup\{(0,1)\}$. Indeed, for a k-length permutation σ and a subset $R \subseteq[0, k] \times[0, k]$, an occurrence of the mesh pattern (σ, R) in a permutation π is an occurrence of σ in π with the additional restriction that no element of π lies inside the shaded regions defined by R, where $(i, j) \in R$ means the square having bottom left corner (i, j) in the graphical representation $\left\{\left(i, \sigma_{i}\right), i \in[k]\right\}$ of σ. For instance, an occurrence of the mesh pattern p_{1} in Figure 1 corresponds to an occurrence of a pure descent. See [6] for a more detailed definition of mesh patterns.

Regarding this interpretation of pure descents in terms of mesh patterns, we define other kinds of descents by the mesh patterns $p_{i}=\left(21, L_{i}\right), p_{i}^{\prime}=\left(21, R_{i}\right)$ with $L_{i}=\{1\} \times[0,2] \cup\{(0, i)\}$ and $R_{i}=\{1\} \times[0,2] \cup\{(2, i)\}$ for $0 \leq i \leq 2$. Modulo the trivial symmetries on permutations (reverse and complement), it is straightforward to see that p_{0}, p_{1} and p_{2} are respectively in the same distribution class as $p_{2}^{\prime}, p_{1}^{\prime}$ and p_{0}^{\prime}. Then, we deal with only mesh
patterns $p_{i}, i \in[0,2]$. We refer to Figure 1 for a graphical illustration. On the other hand, we define a pure excedance as an occurrence of an excedance, i.e. $\pi_{i}>i$, with the additional restriction that there is no point $\left(j, \pi_{j}\right)$ such that $1 \leq j \leq i-1$ with $i \leq \pi_{j}<\pi_{i}$. Although such a pattern (called pex) is not a mesh pattern, we can represent it graphically as shown in Figure 1.

Figure 1: Illustration of the mesh patterns p_{0}, p_{1}, p_{2} and pex; p_{1} and $p e x$ correspond respectively to a pure descent and a pure excedance.

A statistic is an integer-valued function from a set \mathcal{A} of n-length permutations (we use the boldface to denote statistics). For a pattern p, we define the pattern statistic $\mathbf{p}: \mathcal{A} \rightarrow \mathbb{N}$ where the image $\mathbf{p} \pi$ of $\pi \in \mathcal{A}$ by \mathbf{p} is the number of occurrences of p in π. The popularity of p in \mathcal{A} is the total number of occurrences of p over all objects of \mathcal{A}, that is $\sum_{a \in \mathcal{A}} \mathbf{p} a$ (see [5] for instance). Below, we present statistics that we use throughout the paper:

$$
\begin{array}{ll}
\operatorname{exc} \pi & =\text { number of excedances in } \pi, \\
\text { pex } \pi & =\text { number of pure excedances in } \pi, \\
\operatorname{des} \pi & =\text { number of descents in } \pi, \\
\operatorname{des}_{i} \pi & =\text { number of patterns } p_{i} \text { in } \pi, 0 \leq i \leq 2, \\
\text { fix } \pi & =\text { number of fixed points in } \pi, \\
\operatorname{cyc} \pi & =\text { number of cycles in the decomposition of } \pi, \\
\text { pcyc } \pi & =\text { number of pure cycles (i.e. cycles of length at least two) in } \pi, \\
& =\mathbf{c y c} \pi-\text { fix } \pi
\end{array}
$$

We organize the paper as follows. In Section 2, we focus on patterns $p_{i}, 0 \leq i \leq 2$. We prove that the statistics des_{0} and des_{1} are equidistributed by giving algebraic and bijective proofs. Next, we provide the bivariate exponential generating function for the distribution of p_{2}, and we deduce that p_{2} has the same popularity as p_{0} and p_{1}, without having the same distribution. In Section 3, we present a bijection on S_{n} that transports pure excedances into patterns p_{2}. Notice that the Foata's first transformation [9] is not a candidate for such a bijection. As a consequence, pure descents and pure excedances are equipopular on S_{n}, but they do not have the same distribution. Combining all these results, we deduce that patterns $p_{i}, 0 \leq i \leq 2$, and pex are equipopular on the symmetric group S_{n}. Finally we present two conjectures about the equidistribution of (cyc, des ${ }_{2}$) and (cyc, pex), and that of (des, des $_{2}$) and (exc, pex).

2. The statistics $\operatorname{des}_{i}, 0 \leq i \leq 2$

For $0 \leq i \leq 2$, let $A_{n, k}^{i}$ be the set of n-length permutations having k occurrences of p_{i}, and denote by $a_{n, k}^{i}$ its cardinality. Let $A^{i}(x, y)$ be the bivariate exponential generating function $\sum_{n=0}^{\infty} \sum_{k=0}^{n-1} a_{n, k}^{i} \frac{x^{n}}{n!} y^{k}$. In [2,13], it is proved that $a_{n, k}^{1}$ equals the signless Stirling numbers of the first kind $c(n, k+1)$ (see Sequence A132393 in [15]). Indeed, a permutation $\sigma \in A_{n, k}^{1}$ can be uniquely obtained from an ($n-1$)-length permutation π by one of the two following constructions:
(i) if $\pi \in A_{n-1, k-1}^{1}$, then we increase by one all values of π greater than or equal to π_{n-1}, and we add π_{n-1} at the end;
(ii) if $\pi \in A_{n-1, k}^{1}$, then we increase by one all values of π greater than or equal to a given value $x \leq n, x \neq \pi_{n-1}$ and we add x at the end.

Then, we deduce the recurrence relation $a_{n, k}^{1}=a_{n-1, k-1}^{1}+(n-1) a_{n-1, k}^{1}$ with $a_{n, 0}^{1}=(n-1)$! for $n \geq 1$, $a_{0,0}^{1}=1$ and the bivariate exponential generating function is

$$
A^{1}(x, y)=\frac{1}{y(1-x)^{y}}-\frac{1}{y}+1
$$

which proves that $a_{n, k}^{1}=c(n, k+1)$.
Below, we prove that $a_{n, k}^{1}$ also counts n-length permutations having k occurrences of the pattern p_{0}.

Theorem 2.1. The number $a_{n, k}^{0}$ of n-length permutations having k occurrences of pattern p_{0} equals $a_{n, k}^{1}=$ $c(n, k+1)$.
Proof. An n-length permutation $\sigma \in A_{n, k}^{0}$ can be uniquely obtained from an $(n-1)$-length permutation π by one of the two following constructions:
(i) if $\pi \in A_{n-1, k-1}^{0}$, then we increase by one all values of π and we add 1 at the end;
(ii) if $\pi \in A_{n-1, k}^{0}$, then we increase by one all values of π greater than or equal to a given value $x, 1<x \leq n$, and we add x at the end.

We deduce the recurrence relation $a_{n, k}^{0}=a_{n-1, k-1}^{0}+(n-1) a_{n-1, k}^{0}$ with the initial condition $a_{n, 0}^{0}=(n-1)$!, and then $a_{n, k}^{0}=a_{n, k}^{1}=c(n, k+1)$.

Now, we focus on the distribution of the pattern p_{2}. Table 1 provides exact values for small sizes.
Theorem 2.2. We have

$$
A^{2}(x, y)=\frac{e^{x(1-y)}}{(1-x)^{y}}
$$

and the general term $a_{n, k}^{2}$ satisfies for $n \geq 2$ and $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$

$$
a_{n, k}^{2}=n a_{n-1, k}^{2}+(n-1) a_{n-2, k-1}^{2}-(n-1) a_{n-2, k}^{2}
$$

with the initial conditions $a_{n, 0}^{2}=1$ and $a_{n, k}^{2}=0$ for $n \geq 0$ and $k>\left\lfloor\frac{n}{2}\right\rfloor$ (see Table 1 and Sequence A136394 in [15]).

Proof. Let $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ denote a permutation of length n having k occurrences of pattern p_{2}. Let $u_{n, k}$ (resp. $v_{n, k}$) be the number of such permutations satisfying $\sigma_{n}=n$ (resp. $\sigma_{n}<n$). Obviously, we have

$$
a_{n, k}^{2}=u_{n, k}+v_{n, k} .
$$

A permutation σ with $\sigma_{n}=n$ can be uniquely constructed from an $(n-1)$-length permutation π as $\sigma=$ $\pi_{1} \pi_{2} \ldots \pi_{n-1} n$. No new occurrences of p_{2} are created, and we obtain

$$
u_{n, k}=a_{n-1, k}^{2}
$$

A permutation σ satisfying $\sigma_{n}<n$ can be uniquely obtained from an $(n-1)$-length permutation π by adding a value $x<n$ on the right side of its one-line notation, after increasing by one all the values greater than or equal to x. This construction creates a new pattern p_{2} if and only if π ends with $n-1$. Thus, we deduce

$$
v_{n, k}=(n-1) u_{n-1, k-1}+(n-1) v_{n-1, k} .
$$

Combining the equations, we obtain for $n \geq 2$ and $k \geq 1$

$$
a_{n, k}^{2}=n a_{n-1, k}^{2}+(n-1) a_{n-2, k-1}^{2}-(n-1) a_{n-2, k}^{2},
$$

which implies the following differential equation

$$
\frac{\partial A^{2}(x, y)}{\partial x}=(y-1) x A^{2}(x, y)+\frac{\partial\left(x A^{2}(x, y)\right)}{\partial x}, \text { where } A^{2}(x, 0)=1
$$

A simple calculation provides the claimed closed form for the generating function $A^{2}(x, y)$.
Corollary 2.1. For $0 \leq i \leq 2$, the patterns p_{i} are equipopular on S_{n}. Their popularity is given by the generalized Stirling number $n!\cdot\left(H_{n}-1\right)$ (see Sequence A001705 in [15]) where $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is the nth harmonic number.

Proof. The generating function of the popularity is directly deduced from the bivariate generating function of pattern distribution by calculating

$$
\left.\frac{\partial A^{1}(x, y)}{\partial y}\right|_{y=1}=\left.\frac{\partial A^{2}(x, y)}{\partial y}\right|_{y=1}
$$

The statistic des $_{2}$ has a different distribution from des_{0} and des_{1}, but the three patterns p_{0}, p_{1}, p_{2} have the same popularity. Below we present a bijection on S_{n} that transports the statistic des ${ }_{2}$ to the statistics pcyc $=\mathbf{c y c}-\mathbf{f i x}$.

$k \backslash n$	1	2	3	4	5	6	7	8
0	1	1	1	1	1	1	1	1
1		1	5	20	84	409	2365	16064
2				3	35	295	2359	19670
3						15	315	4480
4								105
\ldots								\ldots
\sum	1	2	6	24	120	720	5040	40320

Table 1: Number of n-length permutations having k occurrences of p_{2} for $0 \leq k \leq 4$ and $1 \leq n \leq 8$.

Theorem 2.3. There is a one-to-one correspondence ϕ on S_{n} such that for any $\pi \in S_{n}$, we have

$$
\operatorname{des}_{2} \pi=\operatorname{pcyc} \phi(\pi)
$$

Proof. Let π be a permutation of length n having k occurrences of p_{2}. We decompose

$$
\pi=B_{0} \pi_{i_{1}} A_{1} B_{1} \pi_{i_{2}} A_{2} B_{2} \pi_{i_{3}} \ldots \pi_{i_{k}} A_{k} B_{k}
$$

where

- $\pi_{i_{1}}<\pi_{i_{2}}<\ldots<\pi_{i_{k}}$ are the tops of the occurrences of p_{2}, i.e. values $\pi_{i_{j}}>\pi_{i_{j}+1}$ such that there does not exist $\ell<i_{j}$ such that $\pi_{\ell}>\pi_{i_{j}}$,
- A_{j} is a maximal sequence such that all its values are lower than $\pi_{i_{j}}$,
- for $0 \leq j \leq k, B_{j}$ is an increasing sequence such that $\pi_{i_{j}}<\min B_{j}$ and max $B_{j}<\pi_{i_{j+1}}$.

Now we construct an n-length permutation $\phi(\pi)$ with k pure cycles as follows:

$$
\phi(\pi)=\left\langle\pi_{i_{1}} A_{1}\right\rangle \cdot\left\langle\pi_{i_{2}} A_{2}\right\rangle \cdots\left\langle\pi_{i_{k}} A_{k}\right\rangle .
$$

For instance, if $\pi=125346879$ then $\phi(\pi)=\langle 5,3,4\rangle \cdot\langle 8,7\rangle$. The map ϕ is clearly a bijection on S_{n} such that $\operatorname{des}_{2} \pi$ equals the number of pure cycles in $\phi(\pi)$.

Note that ϕ^{-1} is closely related to the Foata fundamental transformation [9].

3. The statistic pex of pure excedances

In order to prove the equidistribution of pex and $\mathbf{d e s}_{2}$, regarding Theorem 2.3, it suffices to construct a bijection on S_{n} that transports pure excedances to pure cycles. Here, we first exhibit a bijection on the set D_{n} of n-length derangements (permutations without fixed points), then we extend it to the set of all permutations S_{n}.

Any permutation $\pi \in S_{n}$ is uniquely decomposed as a product of transpositions of the following form:

$$
\pi=\left\langle t_{1}, 1\right\rangle \cdot\left\langle t_{2}, 2\right\rangle \cdots\left\langle t_{n}, n\right\rangle
$$

where t_{i} are integers such that $1 \leq t_{i} \leq i$. The transposition array of π is defined by $T(\pi)=t_{1} t_{2} \ldots t_{n}$, which induces a bijection $\pi \longmapsto T(\pi)$ from S_{n} to the product set $T_{n}=[1] \times[2] \times \cdots \times[n]$. By Lemma 1 from [1], the number of cycles of a permutation π is given by the number of fixed points in $T(\pi)$. Moreover, it is straightforward to check the two following properties:

- if $t_{i}=i$, then $\pi_{i}=i$ if and only if there is no number $j>i$ such that $t_{j}=t_{i}=i$;
- if $t_{i}=i$ and $\pi_{i} \neq i$, then i is the minimal element of a cycle of length at least two in π.

So, we deduce the following lemma.
Lemma 3.1. The transposition array $t_{1} t_{2} \ldots t_{n} \in T_{n}$ corresponds to a derangement if and only if: $t_{i}=i \Rightarrow$ there is a $j>i$ such that $t_{j}=i$.

Given a derangement $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in D_{n}$ and its graphical representation $\left\{\left(i, \pi_{i}\right), i \in[n]\right\}$. We say that the square $(i, j) \in[n] \times[n]$ is free if all following conditions hold:
(i) Neither π_{i} nor i is a position of a pure excedance;
(ii) (i, j) is not on the first diagonal, i.e. $j \neq i$;
(iii) there does not exist $k>i$ such that $\pi_{k}=j$;
(iv) j is not a pure excedance such that $j<i$ and $\pi^{-1}(j)<i$;
(v) there does not exist $k<i$, with $\pi_{k}=j>i$ such that all values of the interval $[i, j-1]$ appear on the right of π_{i} in π.

Whenever at least one of the statements above is not satisfied, we say that the square (i, j) is unfree. Notice that if i and π_{i} are not the positions of a pure excedance, then the square $\left(i, \pi_{i}\right)$ is always free. So, for a column i of the graphical representation of π such that i and π_{i} are not the positions of a pure excedance, we label by j the j th free square from the bottom to the top. We refer to Figure 2 for an example of this labeling.

Now we define the map λ from D_{n} to the set T_{n}^{\bullet} of transposition arrays of length n satisfying the property of Lemma 3.1.

For a permutation $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in D_{n}$, we label its graphical representation as defined above, and $\lambda(\pi)=\lambda_{1} \lambda_{2} \ldots \lambda_{n}$ is obtained as follows:

- if i is a pure excedance in π, then we set $\lambda_{i}=i$ and $\lambda_{\pi^{-1}(i)}=i$;
- otherwise, λ_{i} is the sum of the label of the free square $\left(i, \pi_{i}\right)$ with the number of pure excedances $k<i$ such that $\pi^{-1}(k)<i$.

For instance, if $\pi=681254732111910$ then we obtain $\lambda(\pi)=1124421191910$ (see Figure 2).
Let us consider $i, 1 \leq i \leq n$. If i is a pure excedance of π, then we fix $\lambda_{i}=i$ and $\lambda_{\pi^{-1}(i)}=i<\pi^{-1}(i)$. Otherwise, the square (i, i) is unfree, and all squares $\left(i, \pi_{k}\right), i+1 \leq k \leq n$, are unfree, which implies that the number of free squares in the i th column is less than or equal to i. This means that $\lambda(\pi)$ lies in T_{n}. Note that, by construction, all labeled squares do not correspond to any pure excedance. Now let us prove that the square $\left(i, \pi_{i}\right)$ cannot be labeled i. Indeed, if $\pi_{i}<i$ then the label of $\left(i, \pi_{i}\right)$ is necessarily at most $\pi_{i} \leq i-1$; otherwise, if $\pi_{i}>i$ then the fact that i is not a pure excedance implies that there is $\pi_{j} \in\left[i, \pi_{i}-1\right]$ with $j<i$. Let us choose the lowest j with this property. Using (v), the square (i, j) is unfree, which implies that the label of $\left(i, \pi_{i}\right)$ is less than or equal to n minus the minimal number of unfree squares (i, j) in column i, that is $n-(n-i+1)=i-1$. Moreover, the transposition array $\lambda(\pi)$ has exactly pex π fixed points, and for any fixed point i there necessarily exists $j=\pi^{-1}(i)>i$ such that $\lambda_{j}=\lambda_{i}=i$. This implies that $\lambda(\pi) \in T_{n}^{\bullet}$.

Figure 2: Illustration of the bijection λ for $\pi=681254732111910$ and $\lambda(\pi)=1124421191910$.

Theorem 3.1. The map λ from D_{n} to T_{n}^{\bullet} is a bijection such that

$$
\text { pex } \pi=\operatorname{fix} \lambda(\pi)
$$

Proof. Since the cardinality of T_{n}^{\bullet} equals that of D_{n}, and the image of D_{n} by λ is contained in T_{n}^{\bullet}, it suffices to prove the injectivity.

Let π and $\sigma, \pi \neq \sigma$, be two derangements in D_{n}. If π and σ do not have the same pure excedances, then, by construction, $\lambda(\pi)$ and $\lambda(\sigma)$ do not have the same fixed points, and thus $\lambda(\pi) \neq \lambda(\sigma)$.

Now, let us assume that π and σ have the same pure excedances. If there is a pure excedance i such that $\pi^{-1}(i) \neq \sigma^{-1}(i)$ then the definition implies $\lambda(\pi) \neq \lambda(\sigma)$. Otherwise the two permutations have the same pure excedances i, and for each of them we have $\pi^{-1}(i)=\sigma^{-1}(i)$. Let j be the greatest integer such that $\pi_{j} \neq \sigma_{j}$ (without loss of generality, we assume $\pi_{j}<\sigma_{j}$). In this case, j is not a pure excedance for the two permutations. Thus, $\lambda(\pi)_{j}$ (resp. $\left.\lambda(\sigma)_{j}\right)$ is the sum of the label of $\left(j, \pi_{j}\right)$ (resp. $\left.\left(j, \sigma_{j}\right)\right)$ with the number of pure excedances
$k<j$ such that $\pi^{-1}(k)<j$ (resp. $\sigma^{-1}(k)<j$). Since we have $\pi_{j}<\sigma_{j}$, the label of $\left(j, \pi_{j}\right)$ is less than the label of $\left(j, \sigma_{j}\right)$, and the number of pure excedances $k<j$ such that $\pi^{-1}(k)<j$ is less than or equal to the number of pure excedances $k<j$ such that $\sigma^{-1}(k)<j$. Then we have $\lambda(\pi)_{j}<\lambda(\sigma)_{j}$. Then λ is an injective map, and thus a bijection.

Theorem 3.2. There is a one-to-one correspondence ψ on the set D_{n} of n-length derangements such that for any $\pi \in D_{n}$,

$$
\operatorname{pex} \pi=\operatorname{cyc} \psi(\pi)
$$

Proof. Considering Theorem 2.3 and Theorem 3.1, we define for any $\pi \in D_{n}, \psi(\pi)=\phi(\sigma)$ where σ is the permutation having $\lambda(\pi)$ as transposition array.

Theorem 3.3. The two bistatistics (pex, fix) and (pcyc, fix) are equidistribiuted on S_{n}.
Proof. Considering Theorem 3.2, we define the map $\bar{\psi}$ on S_{n}. Let π^{\prime} be the permutation obtained from π by deleting all fixed points and after rescaling as a permutation. Let $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ be the set of fixed points of π. Then, we set $\pi^{\prime \prime}=\psi\left(\pi^{\prime}\right)$. So, $\sigma=\bar{\psi}(\pi)$ is obtained from $\pi^{\prime \prime}$ by inserting fixed points $i \in I$ after a shift of all other entries in order to produce a permutation in S_{n}. By construction, we have pex $\pi=$ pcyc σ and fix $\pi=\mathrm{fix} \sigma$ which completes the proof.

A byproduct of this theorem is
Corollary 3.1. The statistics cyc and pex + fix are equidistributed on S_{n}.
Also, a direct consequence of Theorems 2.3 and 3.3 is
Theorem 3.4. The two statistics pex and $\mathbf{d e s}_{2}$ are equidistributed on S_{n}.
Notice that Foata's first transformation is not a candidate for proving the equidistribution of pex and des ${ }_{2}$, while it transports exc to des. Combining Theorem 3.4 and Corollary 2.1 we have the following.

Corollary 3.2. For $0 \leq i \leq 2$, the patterns p_{i} and pex are equipopular on S_{n} (see Sequence A001705 in [15]).
Finally, we present two conjectures for future works.
Conjecture 3.1. The two bistatistics $\left(\mathbf{d e s}_{2}, \mathbf{c y c}\right)$ and (pex, cyc) are equidistributed on S_{n}.
Conjecture 3.2. The two bistatistics $\left(\mathbf{d e s}_{2}\right.$, des) and (pex, exc) are equidistributed on S_{n}.
It is interesting to remark that (des, cyc) and (exc, cyc) are not equidistributed. Indeed, there are 3 permutations in S_{3} having exc $=1$ and $\mathbf{c y c}=2$, namely $132,213,321$, but only 2 permutations with des $=1$ and $\mathbf{c y c}=2$, videlicet 132 and 213. So, if the Conjectures 3.1 and 3.2 are true then their proofs are probably independent.

Acknowledgements

We would like to greatly thank Vincent Vajnovszki for having offered us Conjecture 3.2 and the anonymous referees for their helpful comments and suggestions.

References

[1] J.-L. Baril, Statistics-preserving bijections between classical and cycle permutations, Inform. Process. Lett. 113 (2013), 17-22.
[2] J.-L. Baril and S. Kirgizov, The pure descent statistic on permutations, Discrete Math. 340:10 (2017), 2250-2558.
[3] J.-L. Baril and V. Vajnovszki, Popularity of patterns over d-equivalence classes of words and permutations, Theoret. Comput. Sci. 814 (2020), 249-258.
[4] F. Bergeron, N. Bergeron, R. B. Howlett and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1 (1992), 23-44.
[5] M. Bóna, Surprising symmetries in objects counted by Catalan numbers, Electron. J. Combin. 19:1 (2012), Article P62.
[6] P. Brändén and A. Claesson, Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, Electron. J. Combin. 18:2 (2011), Article P5.
[7] S. Elizalde, Descent sets of cyclic permutations, Adv. in Appl. Math. 47.4 (2011), 688-709.
[8] S. Elizalde and J. M. Troyka, The number of cycles with a given descent set, Sém. Lothar. Combin. 80 (2018) Article \#8.
[9] D. Foata and M. P. Schützenberger, Théorie Géométrique des Polynômes Euleriens, Lecture Notes in Math. 138, Springer-Verlag, Berlin, 1970.
[10] D. Foata and G.-N. Han, Decreases and descents in words, Sém. Lothar. Combin. 58 (2007), Article B58a.
[11] A. Garsia and C. Reutenauer, A decomposition of Solomon's descent algebra, Adv. Math. 77 (1989), 189-262.
[12] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985), 300-321.
[13] S. Kitaev and P.B. Zhang, Distributions of mesh patterns of short lengths, Adv. in Appl. Math. 110 (2019), 1-32.
[14] P.A. MacMahon, Combinatory Analysis, Volumes 1 and 2, Cambridge Univ. Press, Cambridge, UK, 1915 (reprinted by Chelsea, New York, 1955).
[15] N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences, available electronically at http://oeis.org. [16] R.P. Stanley, Enumerating Combinatorics, Volume 2, Cambridge University Press, 1999.
[17] R.M. Wilson and J.H. van Lint, A course in combinatorics, Volume I, Cambridge University Press, 2002.

