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Abstract: A pure excedance in a permutation π = π1π2 . . . πn is a position i < πi such that there is no
j < i with i ≤ πj < πi. We present a one-to-one correspondence on the symmetric group that transports pure
excedances to descents of a special kind. As a byproduct, we prove that the popularity of pure excedances equals
those of pure descents on permutations, while their distributions are different.
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1. Introduction and notations

The distribution of the number of descents has been widely studied on several classes of combinatorial objects
such as permutations [14], cycles [7, 8], and words [3, 10]. Many interpretations of this statistic appear in
several fields as Coxeter groups [4,11] or lattice path theory [12]. One of the most famous result involves the
Foata fundamental transformation [9] to establish a one-to-one correspondence between descents and excedances
on permutations. This bijection provides a more straightforward proof than those of MacMahon [14] for the
equidistribution of these two Eulerian statistics.

In this paper, we present a bijection à la Foata on the symmetric group that exchanges pure excedances with
special kind of descents defined as a mesh pattern p2 [6] (see below for the definition of this pattern). Then,
we deduce that the popularities (but not the distributions) of pure descents [2] and pure excedances are the
same. This common popularity is given by the generalized Stirling number n! · (Hn − 1) (see Sequence A001705
in [15]) where Hn =

∑n
k=1

1
k is the nth harmonic number. Finally, we conjecture the existence of a bijection on

the symmetric group that exchanges pure excedances and p2 while preserving the number of cycles.
Let Sn be the set of permutations of length n, i.e., all bijections from [n] = {1, 2, . . . , n} into itself. The

one-line representation of a permutation π ∈ Sn is π = π1π2 . . . πn where πi = π(i), 1 ≤ i ≤ n. For σ ∈ Sn,
the product σ · π is the permutation σ(π1)σ(π2) . . . σ(πn). A `-cycle π = 〈i1, i2, . . . , i`〉 in Sn is a n-length
permutation satisfying π(i1) = i2, π(i2) = i3, . . . , π(i`−1) = i`, π(i`) = i1 and π(j) = j for j ∈ [n]\{i1, i2, . . . , i`}.
For 1 ≤ k ≤ n, we denote by Cn,k the set of all n-length permutations admitting a decomposition in a product
of k disjoint cycles. The set Cn,k is counted by the signless Stirling numbers of the first kind c(n, k) defined by

c(n, k) = (n− 1) c(n− 1, k) + c(n− 1, k − 1)

where c(n, k) = 0 if n = 0 or k = 0, except c(0, 0) = 1 (see [16, 17] and Sequence A132393 in [15]). These
numbers also enumerate n-length permutations π having k left-to-right maxima, i.e., positions i ∈ [n] such that
πj < πi for j < i (see [16]), and permutations π ∈ Sn with k − 1 pure descents, i.e., descents πi > πi+1 where
there is no j < i such that πj ∈ [πi+1, πi] (see [2]). Note that a pure descent can be viewed as an occurrence of
the mesh pattern (21, L1) where L1 = {1} × [0, 2] ∪ {(0, 1)}. Indeed, for a k-length permutation σ and a subset
R ⊆ [0, k]× [0, k], an occurrence of the mesh pattern (σ,R) in a permutation π is an occurrence of σ in π with
the additional restriction that no element of π lies inside the shaded regions defined by R, where (i, j) ∈ R means
the square having bottom left corner (i, j) in the graphical representation {(i, σi), i ∈ [k]} of σ. For instance, an
occurrence of the mesh pattern p1 in Figure 1 corresponds to an occurrence of a pure descent. See [6] for a more
detailed definition of mesh patterns.

Regarding this interpretation of pure descents in terms of mesh patterns, we define other kinds of descents by
the mesh patterns pi = (21, Li), p

′
i = (21, Ri) with Li = {1} × [0, 2] ∪ {(0, i)} and Ri = {1} × [0, 2] ∪ {(2, i)} for

0 ≤ i ≤ 2. Modulo the trivial symmetries on permutations (reverse and complement), it is straightforward to see
that p0, p1 and p2 are respectively in the same distribution class as p′2, p′1 and p′0. Then, we deal with only mesh
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patterns pi, i ∈ [0, 2]. We refer to Figure 1 for a graphical illustration. On the other hand, we define a pure
excedance as an occurrence of an excedance, i.e. πi > i, with the additional restriction that there is no point
(j, πj) such that 1 ≤ j ≤ i− 1 with i ≤ πj < πi. Although such a pattern (called pex) is not a mesh pattern, we
can represent it graphically as shown in Figure 1.

p0 = p1 = p2 = pex =

Figure 1: Illustration of the mesh patterns p0, p1, p2 and pex; p1 and pex correspond respectively to a pure
descent and a pure excedance.

A statistic is an integer-valued function from a set A of n-length permutations (we use the boldface to denote
statistics). For a pattern p, we define the pattern statistic p : A → N where the image p π of π ∈ A by p is the
number of occurrences of p in π. The popularity of p in A is the total number of occurrences of p over all objects
of A, that is

∑
a∈A p a (see [5] for instance). Below, we present statistics that we use throughout the paper:

exc π = number of excedances in π,
pex π = number of pure excedances in π,
des π = number of descents in π,
desi π = number of patterns pi in π, 0 ≤ i ≤ 2,
fix π = number of fixed points in π,
cyc π = number of cycles in the decomposition of π,
pcyc π = number of pure cycles (i.e. cycles of length at least two) in π,

= cyc π − fix π

We organize the paper as follows. In Section 2, we focus on patterns pi, 0 ≤ i ≤ 2. We prove that the statistics
des0 and des1 are equidistributed by giving algebraic and bijective proofs. Next, we provide the bivariate
exponential generating function for the distribution of p2, and we deduce that p2 has the same popularity as
p0 and p1, without having the same distribution. In Section 3, we present a bijection on Sn that transports
pure excedances into patterns p2. Notice that the Foata’s first transformation [9] is not a candidate for such a
bijection. As a consequence, pure descents and pure excedances are equipopular on Sn, but they do not have the
same distribution. Combining all these results, we deduce that patterns pi, 0 ≤ i ≤ 2, and pex are equipopular
on the symmetric group Sn. Finally we present two conjectures about the equidistribution of (cyc,des2) and
(cyc,pex), and that of (des,des2) and (exc,pex).

2. The statistics desi, 0 ≤ i ≤ 2

For 0 ≤ i ≤ 2, let Ain,k be the set of n-length permutations having k occurrences of pi, and denote by ain,k its

cardinality. Let Ai(x, y) be the bivariate exponential generating function
∑∞
n=0

∑n−1
k=0 a

i
n,k

xn

n! y
k. In [2, 13], it is

proved that a1n,k equals the signless Stirling numbers of the first kind c(n, k + 1) (see Sequence A132393 in [15]).

Indeed, a permutation σ ∈ A1
n,k can be uniquely obtained from an (n− 1)-length permutation π by one of the

two following constructions:

(i) if π ∈ A1
n−1,k−1, then we increase by one all values of π greater than or equal to πn−1, and we add πn−1 at

the end;

(ii) if π ∈ A1
n−1,k, then we increase by one all values of π greater than or equal to a given value x ≤ n, x 6= πn−1

and we add x at the end.

Then, we deduce the recurrence relation a1n,k = a1n−1,k−1 + (n − 1)a1n−1,k with a1n,0 = (n − 1)! for n ≥ 1,

a10,0 = 1 and the bivariate exponential generating function is

A1(x, y) =
1

y(1− x)y
− 1

y
+ 1

which proves that a1n,k = c(n, k + 1).

Below, we prove that a1n,k also counts n-length permutations having k occurrences of the pattern p0.
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Theorem 2.1. The number a0n,k of n-length permutations having k occurrences of pattern p0 equals a1n,k =
c(n, k + 1).

Proof. An n-length permutation σ ∈ A0
n,k can be uniquely obtained from an (n− 1)-length permutation π by

one of the two following constructions:

(i) if π ∈ A0
n−1,k−1, then we increase by one all values of π and we add 1 at the end;

(ii) if π ∈ A0
n−1,k, then we increase by one all values of π greater than or equal to a given value x, 1 < x ≤ n,

and we add x at the end.

We deduce the recurrence relation a0n,k = a0n−1,k−1 + (n− 1)a0n−1,k with the initial condition a0n,0 = (n− 1)!,

and then a0n,k = a1n,k = c(n, k + 1). �

Now, we focus on the distribution of the pattern p2. Table 1 provides exact values for small sizes.

Theorem 2.2. We have

A2(x, y) =
ex(1−y)

(1− x)y
,

and the general term a2n,k satisfies for n ≥ 2 and 1 ≤ k ≤ bn2 c

a2n,k = na2n−1,k + (n− 1)a2n−2,k−1 − (n− 1)a2n−2,k

with the initial conditions a2n,0 = 1 and a2n,k = 0 for n ≥ 0 and k > bn2 c (see Table 1 and Sequence A136394
in [15]).

Proof. Let σ = σ1σ2 . . . σn denote a permutation of length n having k occurrences of pattern p2. Let un,k (resp.
vn,k) be the number of such permutations satisfying σn = n (resp. σn < n). Obviously, we have

a2n,k = un,k + vn,k.

A permutation σ with σn = n can be uniquely constructed from an (n − 1)-length permutation π as σ =
π1π2 . . . πn−1n. No new occurrences of p2 are created, and we obtain

un,k = a2n−1,k.

A permutation σ satisfying σn < n can be uniquely obtained from an (n− 1)-length permutation π by adding a
value x < n on the right side of its one-line notation, after increasing by one all the values greater than or equal
to x. This construction creates a new pattern p2 if and only if π ends with n− 1. Thus, we deduce

vn,k = (n− 1)un−1,k−1 + (n− 1)vn−1,k.

Combining the equations, we obtain for n ≥ 2 and k ≥ 1

a2n,k = na2n−1,k + (n− 1)a2n−2,k−1 − (n− 1)a2n−2,k,

which implies the following differential equation

∂A2(x, y)

∂x
= (y − 1)xA2(x, y) +

∂
(
xA2(x, y)

)
∂x

, where A2(x, 0) = 1.

A simple calculation provides the claimed closed form for the generating function A2(x, y). �

Corollary 2.1. For 0 ≤ i ≤ 2, the patterns pi are equipopular on Sn. Their popularity is given by the generalized
Stirling number n! · (Hn − 1) (see Sequence A001705 in [15]) where Hn =

∑n
k=1

1
k is the nth harmonic number.

Proof. The generating function of the popularity is directly deduced from the bivariate generating function of
pattern distribution by calculating

∂A1(x, y)

∂y

∣∣∣∣
y=1

=
∂A2(x, y)

∂y

∣∣∣∣
y=1

.

�

The statistic des2 has a different distribution from des0 and des1, but the three patterns p0, p1, p2 have
the same popularity. Below we present a bijection on Sn that transports the statistic des2 to the statistics
pcyc = cyc− fix.
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k\n 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1
1 1 5 20 84 409 2365 16064
2 3 35 295 2359 19670
3 15 315 4480
4 105
. . . . . .∑

1 2 6 24 120 720 5040 40320

Table 1: Number of n-length permutations having k occurrences of p2 for 0 ≤ k ≤ 4 and 1 ≤ n ≤ 8.

Theorem 2.3. There is a one-to-one correspondence φ on Sn such that for any π ∈ Sn, we have

des2 π = pcyc φ(π).

Proof. Let π be a permutation of length n having k occurrences of p2. We decompose

π = B0πi1A1B1πi2A2B2πi3 . . . πikAkBk,

where
- πi1 < πi2 < . . . < πik are the tops of the occurrences of p2, i.e. values πij > πij+1 such that there does not

exist ` < ij such that π` > πij ,
- Aj is a maximal sequence such that all its values are lower than πij ,
- for 0 ≤ j ≤ k, Bj is an increasing sequence such that πij < minBj and maxBj < πij+1

.
Now we construct an n-length permutation φ(π) with k pure cycles as follows:

φ(π) = 〈πi1A1〉 · 〈πi2A2〉 · · · 〈πikAk〉.

For instance, if π = 125346879 then φ(π) = 〈5, 3, 4〉 · 〈8, 7〉. The map φ is clearly a bijection on Sn such that
des2 π equals the number of pure cycles in φ(π). �

Note that φ−1 is closely related to the Foata fundamental transformation [9].

3. The statistic pex of pure excedances

In order to prove the equidistribution of pex and des2, regarding Theorem 2.3, it suffices to construct a bijection
on Sn that transports pure excedances to pure cycles. Here, we first exhibit a bijection on the set Dn of n-length
derangements (permutations without fixed points), then we extend it to the set of all permutations Sn.

Any permutation π ∈ Sn is uniquely decomposed as a product of transpositions of the following form:

π = 〈t1, 1〉 · 〈t2, 2〉 · · · 〈tn, n〉

where ti are integers such that 1 ≤ ti ≤ i. The transposition array of π is defined by T (π) = t1t2 . . . tn, which
induces a bijection π 7−→ T (π) from Sn to the product set Tn = [1] × [2] × · · · × [n]. By Lemma 1 from [1],
the number of cycles of a permutation π is given by the number of fixed points in T (π). Moreover, it is
straightforward to check the two following properties:

- if ti = i, then πi = i if and only if there is no number j > i such that tj = ti = i;
- if ti = i and πi 6= i, then i is the minimal element of a cycle of length at least two in π.
So, we deduce the following lemma.

Lemma 3.1. The transposition array t1t2 . . . tn ∈ Tn corresponds to a derangement if and only if: ti = i ⇒
there is a j > i such that tj = i.

Given a derangement π = π1π2 . . . πn ∈ Dn and its graphical representation {(i, πi), i ∈ [n]}. We say that
the square (i, j) ∈ [n]× [n] is free if all following conditions hold:

(i) Neither πi nor i is a position of a pure excedance;

(ii) (i, j) is not on the first diagonal, i.e. j 6= i;

(iii) there does not exist k > i such that πk = j;
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(iv) j is not a pure excedance such that j < i and π−1(j) < i;

(v) there does not exist k < i, with πk = j > i such that all values of the interval [i, j − 1] appear on the right
of πi in π.

Whenever at least one of the statements above is not satisfied, we say that the square (i, j) is unfree. Notice
that if i and πi are not the positions of a pure excedance, then the square (i, πi) is always free. So, for a column
i of the graphical representation of π such that i and πi are not the positions of a pure excedance, we label by j
the jth free square from the bottom to the top. We refer to Figure 2 for an example of this labeling.

Now we define the map λ from Dn to the set T •n of transposition arrays of length n satisfying the property of
Lemma 3.1.

For a permutation π = π1π2 . . . πn ∈ Dn, we label its graphical representation as defined above, and
λ(π) = λ1λ2 . . . λn is obtained as follows:

• if i is a pure excedance in π, then we set λi = i and λπ−1(i) = i;

• otherwise, λi is the sum of the label of the free square (i, πi) with the number of pure excedances k < i
such that π−1(k) < i.

For instance, if π = 6 8 12 5 4 7 3 2 11 1 9 10 then we obtain λ(π) = 1 1 2 4 4 2 1 1 9 1 9 10 (see Figure 2).
Let us consider i, 1 ≤ i ≤ n. If i is a pure excedance of π, then we fix λi = i and λπ−1(i) = i < π−1(i).

Otherwise, the square (i, i) is unfree, and all squares (i, πk), i+ 1 ≤ k ≤ n, are unfree, which implies that the
number of free squares in the ith column is less than or equal to i. This means that λ(π) lies in Tn. Note that,
by construction, all labeled squares do not correspond to any pure excedance. Now let us prove that the square
(i, πi) cannot be labeled i. Indeed, if πi < i then the label of (i, πi) is necessarily at most πi ≤ i− 1; otherwise, if
πi > i then the fact that i is not a pure excedance implies that there is πj ∈ [i, πi − 1] with j < i. Let us choose
the lowest j with this property. Using (v), the square (i, j) is unfree, which implies that the label of (i, πi) is less
than or equal to n minus the minimal number of unfree squares (i, j) in column i, that is n− (n− i+ 1) = i− 1.
Moreover, the transposition array λ(π) has exactly pex π fixed points, and for any fixed point i there necessarily
exists j = π−1(i) > i such that λj = λi = i. This implies that λ(π) ∈ T •n .

π =

•

•

•

•
•

•

•
•

•

•

•
•

1 1

2

1

2

3

4

1

2

3

4

5

1

2

3

4

5

6

1

2

3

4

5

6

7

8

λ(π) = • •
•

• •

•
• •

•

•

•
•

1 1

2

1

2

3

4

1

2

3

4

5

1

2

3

4

5

6

1

2

3

4

5

6

7

8

Figure 2: Illustration of the bijection λ for π = 6 8 12 5 4 7 3 2 11 1 9 10 and λ(π) = 1 1 2 4 4 2 1 1 9 1 9 10.

Theorem 3.1. The map λ from Dn to T •n is a bijection such that

pex π = fix λ(π).

Proof. Since the cardinality of T •n equals that of Dn, and the image of Dn by λ is contained in T •n , it suffices to
prove the injectivity.

Let π and σ, π 6= σ, be two derangements in Dn. If π and σ do not have the same pure excedances, then, by
construction, λ(π) and λ(σ) do not have the same fixed points, and thus λ(π) 6= λ(σ).

Now, let us assume that π and σ have the same pure excedances. If there is a pure excedance i such that
π−1(i) 6= σ−1(i) then the definition implies λ(π) 6= λ(σ). Otherwise the two permutations have the same pure
excedances i, and for each of them we have π−1(i) = σ−1(i). Let j be the greatest integer such that πj 6= σj
(without loss of generality, we assume πj < σj). In this case, j is not a pure excedance for the two permutations.
Thus, λ(π)j (resp. λ(σ)j) is the sum of the label of (j, πj) (resp. (j, σj)) with the number of pure excedances
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k < j such that π−1(k) < j (resp. σ−1(k) < j). Since we have πj < σj , the label of (j, πj) is less than the label
of (j, σj), and the number of pure excedances k < j such that π−1(k) < j is less than or equal to the number of
pure excedances k < j such that σ−1(k) < j. Then we have λ(π)j < λ(σ)j . Then λ is an injective map, and
thus a bijection. �

Theorem 3.2. There is a one-to-one correspondence ψ on the set Dn of n-length derangements such that for
any π ∈ Dn,

pex π = cyc ψ(π).

Proof. Considering Theorem 2.3 and Theorem 3.1, we define for any π ∈ Dn, ψ(π) = φ(σ) where σ is the
permutation having λ(π) as transposition array. �

Theorem 3.3. The two bistatistics (pex,fix) and (pcyc,fix) are equidistribiuted on Sn.

Proof. Considering Theorem 3.2, we define the map ψ̄ on Sn. Let π′ be the permutation obtained from π by
deleting all fixed points and after rescaling as a permutation. Let I = {i1, i2, . . . , ik} be the set of fixed points
of π. Then, we set π′′ = ψ(π′). So, σ = ψ̄(π) is obtained from π′′ by inserting fixed points i ∈ I after a shift
of all other entries in order to produce a permutation in Sn. By construction, we have pex π = pcyc σ and
fix π = fix σ which completes the proof. �

A byproduct of this theorem is

Corollary 3.1. The statistics cyc and pex + fix are equidistributed on Sn.

Also, a direct consequence of Theorems 2.3 and 3.3 is

Theorem 3.4. The two statistics pex and des2 are equidistributed on Sn.

Notice that Foata’s first transformation is not a candidate for proving the equidistribution of pex and des2,
while it transports exc to des. Combining Theorem 3.4 and Corollary 2.1 we have the following.

Corollary 3.2. For 0 ≤ i ≤ 2, the patterns pi and pex are equipopular on Sn (see Sequence A001705 in [15]).

Finally, we present two conjectures for future works.

Conjecture 3.1. The two bistatistics (des2, cyc) and (pex, cyc) are equidistributed on Sn.

Conjecture 3.2. The two bistatistics (des2,des) and (pex, exc) are equidistributed on Sn.

It is interesting to remark that (des, cyc) and (exc, cyc) are not equidistributed. Indeed, there are 3
permutations in S3 having exc = 1 and cyc = 2, namely 132, 213, 321, but only 2 permutations with des = 1
and cyc = 2, videlicet 132 and 213. So, if the Conjectures 3.1 and 3.2 are true then their proofs are probably
independent.
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