Dyck paths with catastrophes modulo the positions of a given pattern

Jean-Luc Baril Sergey Kirgizov
LIB, Université de Bourgogne Franche-Comt
B.P. 47 870, 21078 Dijon Cedex
France
barjl@u-bourgogne.fr sergey.kirgizov@u-bourgogne.fr
Armen Petrossian
ESEO Paris
B.P. 47 870, 21078 Dijon Cedex
France
armen.petrossian@eseo.fr

Abstract

For any pattern p of length at most 2 , we provide generating functions and asymptotic approximations for the number of p-equivalence classes of Dyck paths with catastrophes, where two paths of the same length are p-equivalent whenever the positions of the occurrences of the pattern p are the same.

1 Introduction and notation

A Dyck path with catastrophes is a lattice path in the first quadrant of the $x y$-plane that starts at the origin, ends on the x-axis, and is made of up-steps $U=(1,1)$, downsteps $D=(1,-1)$, and catastrophe steps $C_{k}=(1,-k), k \geqslant 2$, so that catastrophe steps always end on the x-axis. Depending on the context, we can use the symbol C to design a catastrophe step, and by convenience we use $C_{1}=D$. We let \mathcal{E} denote the set of all Dyck paths with catastrophes, and \mathcal{D} be the set of Dyck paths, i.e. the paths in \mathcal{E} that do not contain any catastrophe steps $C_{k}, k \geqslant 2$. The length $|P|$ of a path P is the number of its steps. The empty path is denoted by ϵ. See Figure 1 for an example of a Dyck path with catastrophes of length 14. A pattern consists of consecutive steps in a path. We will say that an occurrence of a pattern (or for short a pattern) is at position $i \geqslant 1$ in a path whenever the first step of the pattern appears at the i-th step of the path, the second step at the $(i+1)$-st step, and so on. The
height of an occurrence of a pattern is the minimal ordinate reached by its points. For instance, the Dyck path with catastrophes $P=U U C_{2} U U U D U D D U C_{2} U D$ contains three occurrences of the pattern $U U$ at positions 1,4 and 5 , and the heights of these occurrences are respectively 0,0 and 1 .

Figure 1: Dyck path with catastrophes $U U C_{2} U U U D U D D U C_{2} U D$.
The concept of a Dyck path with catastrophes was first introduced by Krinik et al. in [9] in the context of queuing theory. These paths correspond to the evolution of a queue by allowing some resets modeled by a catastrophe step $C_{k}, k \geqslant 2$. Then, Banderier and Wallner [1] provided enumerative results and limit laws of these objects. They showed how any non empty path $P \in \mathcal{E}$ can be decomposed either as $P=U \alpha D \beta$, or $P=U \alpha_{1} U \alpha_{2} \ldots U \alpha_{k} C_{k} \beta$ for some $k \geqslant 2$, where $\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are Dyck paths in \mathcal{D} and $\beta \in \mathcal{E}$. They deduced a functional equation for the generating function $E(x)=\sum_{n \geqslant 0} e_{n} x^{n}$ where e_{n} is the number of paths of length n in \mathcal{E}, with the solution

$$
E(x)=\frac{2 x-1+\sqrt{1-4 x^{2}}}{x-1+(1+x) \sqrt{1-4 x^{2}}}
$$

The sequence $\left(e_{n}\right)_{n \geqslant 0}$ corresponds to A224747 in the On-line Encyclopedia of Integer Sequences (OEIS) [12], and the first values for $n \geqslant 0$ are 1, $0,1,3,5,12,23,52,105,232$, 480. More recently, Baril and Kirgizov [4] exhibited a one-to-one correspondence between Dyck paths with catastrophes of length n and Dyck paths of length $2 n$ avoiding $U U U$ and $D U D$ at height at least one, and where every occurrence of $U D$ on the x-axis appears before (but not necessarily contiguous with) an occurrence of $U U U$.

On the other hand, in $[2-6,10]$ the authors investigated equivalence relations on the sets of Dyck paths, Motzkin paths, skew Dyck paths, Lukasiewicz paths, and Ballot paths where two paths of the same length are equivalent whenever they coincide on all occurrences of a given pattern. The main goal of this study consists in extending these studies for Dyck paths with catastrophes by considering the analogous equivalence relation on \mathcal{E}.

Definition 1.1 Two Dyck paths of the same length and with catastrophes are pequivalent whenever they have the same positions of the occurrences of the pattern p.

For instance, the path $U U D U U C_{3}$ is U-equivalent to $U U C_{2} U U C_{2}$ since the occurrences of U appear at the same positions in the two paths.

Then, one may naturally split the set \mathcal{E} into p-equivalence classes, which are constructed so that paths P and Q in \mathcal{E} belong to the same p-equivalence class if, and only if, they are p-equivalent.

In this paper, we provide ordinary generating functions (o.g.f. for short) for the number of p-equivalence classes in \mathcal{E} with respect to the length whenever p is a pattern of length at most two. Our method consists in providing one-to-one correspondences between equivalence classes and certain subsets of \mathcal{E} (called subsets of representative elements) and enumerating them using algebraic techniques. Remark that only one pattern of size 2 , namely $D D$, gives a non-rational generating function. For this pattern, the construction of a set of representative elements and its enumeration are quite intricate and handled in the last subsection of the paper. We refer to Table 1 for an overview of our results.

Pattern	OEIS [12]	Sequences for $a_{n}, 2 \leqslant n \leqslant 10$, and formulæ	Theorem	O.g.f.
U	Shift of A037952	$\begin{aligned} & 1,1,3,4,10,15,35,56,126, \ldots \\ & \binom{n-1}{\left\lfloor\frac{n-2}{2}\right\rfloor} \end{aligned}$	Thm 2.2	Algebraic
D	New	$\begin{cases}\binom{n}{\frac{n-3}{2}} & \text { if } n \text { is odd, } \\ \binom{n}{\frac{n-4}{2}}+\binom{n}{\frac{n}{2}} /\left(\frac{n}{2}+1\right) & \text { otherwise }\end{cases}$	Thm 2.4	
C	A212804	$\begin{aligned} & 1,1,2,3,5,8,13,21,34, . \\ & \left\{\begin{array}{l} c_{n}=c_{n-1}+c_{n-2}, \\ c_{0}=1, c_{1}=0 \end{array}\right. \end{aligned}$	Thm 2.6	
$U U$	A347493	$\begin{aligned} & 1,1,3,4,8,13,24,41,75, \ldots \\ & \left\{\begin{array}{l} f_{n}=f_{n-1}+f_{n-2}+f_{n-4}, \\ f_{0}=1, f_{1}=0, f_{2}=1, f_{3}=1 \end{array}\right. \end{aligned}$	Thm 3.2	
$U D$	A215004	$\begin{aligned} & 1,1,3,5,10,17,30,50,84, \ldots \\ & \left\{\begin{array}{l} g_{n}=2 g_{n-1}+g_{n-2}-3 g_{n-3}+g_{n-5} \\ g_{1}=0, g_{0}=g_{2}=g_{3}=1, g_{4}=3 \end{array}\right. \end{aligned}$	Thm 3.4	
UC	New	$\begin{aligned} & 1,1,2,4,5,9,15,24,40, \ldots \\ & \left\{\begin{array}{l} i_{n}=2 i_{n-1}-i_{n-2}+i_{n-3}-i_{n-4}+i_{n-5}-i_{n-6}+i_{n-7}, \\ i_{0}=1, i_{1}=0, i_{2}=1, i_{3}=1, i_{4}=2, i_{5}=4, i_{6}=5 \end{array}\right. \end{aligned}$	Thm 3.6	Rational
DC	New	$\begin{aligned} & 1,1,1,2,2,4,6,9,14, \ldots \\ & \left\{\begin{array}{l} j_{n}=2 j_{n-1}-j_{n-2}+j_{n-5}-j_{n-6}+j_{n-7}, \\ j_{0}=1, j_{1}=0, j_{2}=j_{3}=j_{4}=1, j_{5}=2, j_{6}=2 \end{array}\right. \end{aligned}$	Thm 3.8	
$C U$	Shift of A000045	$\begin{aligned} & 1,1,1,2,3,5,8,13,21, \ldots \\ & \left\{\begin{array}{l} k_{n}=k_{n-1}+k_{n-2}, \\ k_{0}=1, k_{1}=0, k_{2}=k_{3}=k_{4}=1 \end{array}\right. \end{aligned}$	Thm 3.10	
$D U$	A212804	$\begin{aligned} & 1,1,2,3,5,8,13,21,34, . \\ & \left\{\begin{array}{l} \ell_{n}=\ell_{n-1}+\ell_{n-2}, \\ \ell_{0}=1, \ell_{1}=0, \ell_{2}=1 \end{array}\right. \end{aligned}$	Thm 3.12	
DD	New	$1,1,2,1,4,5,11,11,27, \ldots$ General formula remains to be found	Thm 3.15	Algebraic

Table 1: Summary of results; generating functions are given in the corresponding theorems.

2 Patterns of length one

Our goal in this section is to provide generating functions that count p-equivalence classes with respect to the path length, whenever the pattern p is U, D, or C. For
each pattern, the method consists in constructing a set of representative elements of p-equivalence classes and enumerating them with respect to the length by giving a generating function. From this, we deduce a closed-form expression (that depends on the length) or a recurrence relation for the number of corresponding p-equivalence classes.

2.1 Pattern U

Let us define the set \mathcal{A} consisting of the union of the set \mathcal{D} of Dyck paths with the set \mathcal{D}^{\prime} of paths in \mathcal{E} having only one catastrophe $C_{k}, k \geqslant 2$, located at the end of the path. We will prove that there is a one-to-one correspondence between \mathcal{A} and the U-equivalence classes of \mathcal{E}, and we enumerate them by providing a generating function that counts \mathcal{A} with respect to the length.

Theorem 2.1 There is a bijection between \mathcal{A} and the set of U-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{A}$ such that P and Q belong to the same U-equivalence class. If we have $P \in \mathcal{D}$, then we choose $Q=P \in \mathcal{A}$. Otherwise, we decompose $P=\alpha_{1} C_{k_{1}} \alpha_{2} C_{k_{2}} \ldots \alpha_{r} C_{k_{r}} \alpha_{r+1}$ where $r \geqslant 1, k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$ and all α_{i} do not contain any catastrophe steps. If α_{r+1} is empty, then we set $Q=\alpha_{1} D \alpha_{2} D \ldots \alpha_{r} C_{k}$ where $k=\left(k_{1}-1\right)+\left(k_{2}-1\right)+\ldots+\left(k_{r-1}-1\right)+k_{r}=$ $\sum_{i=1}^{r} k_{i}-(r-1) \geqslant 2 r-(r-1) \geqslant 2$. If α_{r+1} is not empty, it can be written $\alpha^{\prime} D$, and we set $Q=\alpha_{1} D \alpha_{2} D \ldots \alpha_{r} D \alpha^{\prime} C_{k}$ where $k=k_{1}-1+k_{2}-1+k_{r-1}-1+k_{r}-1+1=$ $\sum_{i=1}^{r} k_{i}-r+1 \geqslant 2 r-r+1 \geqslant 2$. In these last two cases, we have $Q \in \mathcal{A}$ so that P and Q belong to the same U-equivalence class.

Now, let us prove that if P and Q are two paths of the same length in \mathcal{A} lying in the same U-equivalence class, then $P=Q$. According to the decomposition of a Dyck path with catastrophes (see the Introduction), we write either $P=\alpha$ or $P=\alpha U \alpha_{1} U \alpha_{2} \ldots U \alpha_{k} C_{k}$ (respectively $Q=\alpha^{\prime}$ or $Q=\alpha^{\prime} U \alpha_{1}^{\prime} U \alpha_{2}^{\prime} \ldots U \alpha_{\ell}^{\prime} C_{\ell}$) for some $k, \ell \geqslant 2$ and where $\alpha, \alpha^{\prime}, \alpha_{i}, \alpha_{i}^{\prime}$ are some Dyck paths. Since a Dyck path is characterized by the positions of its up steps, and P and Q are in the same U-equivalence class, we necessarily have $\alpha=\alpha^{\prime}, \alpha_{i}^{\prime}=\alpha_{i}^{\prime}$ for $i \leqslant \min \{k, \ell\}$, which implies that $P=Q$.

Theorem 2.2 The o.g.f. with respect to the length for the set \mathcal{A} is given by

$$
A(x)=\frac{\left(1-\sqrt{1-4 x^{2}}\right)(1-x)}{x\left(2 x-1+\sqrt{1-4 x^{2}}\right)}
$$

The series expansion of $A(x)$ is

$$
1+x^{2}+x^{3}+3 x^{4}+4 x^{5}+10 x^{6}+15 x^{7}+35 x^{8}+56 x^{9}+126 x^{10}+210 x^{11}+O\left(x^{12}\right) .
$$

Proof. A path in \mathcal{A} is either a Dyck path in \mathcal{D}, or a path $\alpha U \alpha_{1} U \alpha_{2} U \alpha_{3} \ldots U \alpha_{k} C_{k}$ where $k \geqslant 2$ and $\alpha, \alpha_{1}, \ldots, \alpha_{k}$ are some Dyck paths. We deduce that $A(x)=$ $D(x)+D(x) \cdot \frac{x^{2} D(x)^{2}}{1-x D(x)} \cdot x$ where $D(x)=\frac{1-\sqrt{1-4 x^{2}}}{2 x^{2}}$ is the o.g.f. that counts Dyck paths with respect to the length (see [7]).

Remark 2.1 With Theorem 2.2, it is easy to check that $x^{2}-2 x+1+\left(-2 x^{2}+\right.$ $3 x-1) A(x)+\left(2 x^{2}-x\right) A(x)^{2}=0$, and the coefficient a_{n} of x^{n} in $A(x)$ is $\binom{n-1}{\left\lfloor\frac{n-2}{2}\right.}$ which generates a shift of the sequence A037952 in OEIS [12]. Using a classical analysis $[8,11]$ of dominant singularity of $A(x), a_{n}$ has the asymptotic approximation $\frac{2^{n}}{\sqrt{2 \pi n}}$.

2.2 Pattern D

Let us define the set \mathcal{B} consisting of the union of the set \mathcal{D} of Dyck paths with the set $\mathcal{D}^{\prime \prime}$ of paths $P \in \mathcal{E}$ having only one catastrophe.

Theorem 2.3 There is a bijection between \mathcal{B} and the set of D-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{B}$ such that P and Q belong to the same D-equivalence class. If we have $P \in \mathcal{D}$, then we choose $Q=P \in \mathcal{B}$; otherwise, we decompose $P=\alpha_{1} C_{k_{1}} \alpha_{2} C_{k_{2}} \ldots \alpha_{r} C_{k_{r}} \alpha_{r+1}$ where $r \geqslant 1, k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$ and all α_{i} do not contain any catastrophe steps. If α_{r+1} is empty, then we set $Q=\alpha_{1} U \alpha_{2} U \ldots \alpha_{r} C_{k}$ where $k=\left(k_{1}+1\right)+\left(k_{2}+1\right)+\ldots+\left(k_{r-1}+1\right)+k_{r}=$ $r-1+\sum_{i=1}^{r} k_{i}$. If α_{r+1} is not empty, it is necessarily a Dyck path, and we set $Q=\alpha_{1} U \alpha_{2} U \ldots \alpha_{r} C_{k} \alpha_{r+1}$ where $k=k_{1}+1+k_{2}+1+k_{r-1}+1+k_{r}=r-1+\sum_{i=1}^{r} k_{i}$. In all these cases, we have $Q \in \mathcal{B}$ so that P and Q belong to the same D-equivalence class.

With a similar argument as for the proof of Theorem 2.1, it is easy to prove that if P and Q are two paths in \mathcal{B} lying in the same class, then $P=Q$.

Theorem 2.4 The o.g.f. with respect to the length for the set \mathcal{B} is given by

$$
B(x)=\frac{\left(1-\sqrt{1-4 x^{2}}\right)\left(2 x^{3}-4 x^{2}+1+\left(2 x^{2}-1\right) \sqrt{1-4 x^{2}}\right)}{2 x^{4}\left(2 x-1+\sqrt{1-4 x^{2}}\right)} .
$$

The series expansion of $B(x)$ is

$$
1+x^{2}+x^{3}+3 x^{4}+5 x^{5}+11 x^{6}+21 x^{7}+42 x^{8}+84 x^{9}+162 x^{10}+330 x^{11}+O\left(x^{12}\right) .
$$

Proof. A path in \mathcal{B} is either a Dyck path in \mathcal{D}, or a path of the form $\alpha U \alpha_{1} U \alpha_{2} U \alpha_{3} \ldots$ $U \alpha_{k} C_{k} \beta$ where $k \geqslant 2$ and $\alpha, \alpha_{1}, \ldots, \alpha_{k}, \beta$ are some Dyck paths. We deduce that
$B(x)$ satisfies the functional equation $B(x)=D(x)+\frac{x^{3} D(x)^{4}}{1-x D(x)}$ where $D(x)=\frac{1-\sqrt{1-4 x^{2}}}{2 x^{2}}$ is the o.g.f. that counts Dyck paths with respect to the length (see [7]).

Remark 2.2 We have

$$
5 x^{3}-4 x^{2}-x+1+\left(-2 x^{4}-5 x^{3}+5 x^{2}+x-1\right) B(x)+\left(2 x^{5}-x^{4}\right) B(x)^{2}=0
$$

and the coefficient b_{n} of x^{n} in $B(x)$ is

$$
b_{n}= \begin{cases}\binom{n}{\frac{n-3}{2}} & \text { if } n \text { is odd } \\ \binom{n}{\frac{n-4}{2}}+\binom{n}{\frac{n}{2}} /\left(\frac{n}{2}+1\right) & \text { otherwise }\end{cases}
$$

This last result can be easily obtained by combining already known formulæ (see A002054 and A344191 in [12]), or directly using Maple. The sequence b_{n} has an asymptotic approximation $\frac{2^{n+\frac{1}{2}}}{\sqrt{\pi n}}$.

2.3 Pattern C

In this section, two paths of the same length are C-equivalent whenever, for any $k \geqslant 2$ they have the same positions of the occurrences of C_{k}. For instance,

$$
U U D D U U C_{2} U U U C_{3} U U C_{2} U D
$$

is C-equivalent to

$$
U D U D U U C_{2} U U U C_{3} U U C_{2} U D
$$

but not to

$$
U U U D U U C_{4} U U U C_{3} U U C_{2} U D
$$

Let \mathcal{C} be the set of paths $P \in \mathcal{E}$ such that:
(i) $P=(U D)^{k}$ for $k \geqslant 0$, or
(ii) $P=(U D)^{\ell_{1}} U^{k_{1}} C_{k_{1}}(U D)^{\ell_{2}} U^{k_{2}} C_{k_{2}} \ldots(U D)^{\ell_{r}} U^{k_{r}} C_{k_{r}}(U D)^{\ell_{r+1}}$ with $r \geqslant 1, \ell_{i} \geqslant 0$ for $1 \leqslant i \leqslant r+1$, and $k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$.

Theorem 2.5 There is a bijection between \mathcal{C} and the set of C-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{C}$ such that P and Q belong to the same C-equivalence class. If we have $P \in \mathcal{D}$, then we choose $Q=(U D)^{k} \in \mathcal{C}$ with $k=|P| / 2$. Otherwise, we decompose $P=\alpha_{1} C_{k_{1}} \alpha_{2} C_{k_{2}} \ldots \alpha_{r} C_{k_{r}} \alpha_{r+1}$ where $r \geqslant 1, k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$ and all α_{i} do not contain any catastrophe steps. We set $Q=(U D)^{j_{1}} U^{k_{1}} C_{k_{1}}(U D)^{j_{2}} U^{k_{2}} C_{k_{2}} \ldots(U D)^{j_{r}} U^{k_{r}} C_{k_{r}}(U D)^{j_{r+1}}$ where $j_{i}+k_{i}=\left|\alpha_{i}\right|$, $1 \leqslant i \leqslant r$ and $j_{r+1}=\left|\alpha_{r+1}\right|$. We have $Q \in \mathcal{C}$ so that P and Q belong to the same C-equivalence class. Due to the form of Q, it is straightforward to see that if P and Q are two paths in \mathcal{C} lying in the same class, then $P=Q$.

Theorem 2.6 The o.g.f. with respect to the length for the set \mathcal{C} is given by

$$
C(x)=\frac{1-x}{1-x-x^{2}}
$$

The series expansion of $C(x)$ is

$$
1+x^{2}+x^{3}+2 x^{4}+3 x^{5}+5 x^{6}+8 x^{7}+13 x^{8}+21 x^{9}+34 x^{10}+55 x^{11}+O\left(x^{12}\right)
$$

Proof. Due to the definition of the set \mathcal{C}, we obtain directly the functional equation $C(x)=\frac{1}{1-x^{2}}+\frac{1}{1-x^{2}} \cdot \frac{C^{\prime}(x)}{1-C^{\prime}(x)}$ where $C^{\prime}(x)=\frac{x^{3}}{1-x} \cdot \frac{1}{1-x^{2}}$ is the o.g.f. that counts the paths of the form $(U D)^{\ell} U^{k} C_{k}$ for $\ell \geqslant 0$ and $k \geqslant 2$.

Remark 2.3 From Theorem 2.6, we deduce that the coefficient c_{n} of x^{n} in $C(x)$ satisfies $c_{n}=c_{n-1}+c_{n-2}$ for $n \geqslant 2$ with $c_{0}=1$ and $c_{1}=0$, which generates the sequence A212804 in [12] (it is a variant of the well known Fibonacci sequence A000045). Using the classical method for asymptotic approximation (see [8, 11]), we have

$$
c_{n} \sim \frac{3-\sqrt{5}}{5-\sqrt{5}} \cdot\left(\frac{\sqrt{5}-1}{2}\right)^{n} .
$$

3 Patterns of length two

In this section, we provide generating functions that count p-equivalence classes with respect to the length whenever the pattern p is $U U, U D, U C, D C, C U, D U$ or $D D$. The techniques used are similar, although more elaborate, to those used in the previous section.

3.1 Pattern $U U$

Let \mathcal{F} be the set of paths $P \in \mathcal{E}$ such that:
(i) $P=(U D)^{k}$ for $k \geqslant 0$, or
(ii) $P=(U D)^{\ell_{0}} U^{k_{1}} \alpha_{1} U^{k_{2}} \alpha_{2} \ldots U^{k_{r}} \alpha_{r}$ where $r \geqslant 1, \ell_{0} \geqslant 0, k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$, all α_{i} for $1 \leqslant i \leqslant r-1$ are either $(D U)^{k} D$ or $(D U)^{k} D D$ for some $k \geqslant 0$, and α_{r} is either $(D U)^{k} C_{s}$ or $(D U)^{k} D C_{s}$ for some $k \geqslant 0$ and with $s \geqslant 1$ is so that the path ends on the x-axis (note that s can be 1 , and in this case $C_{1}=D$).

Theorem 3.1 There is a bijection between \mathcal{F} and the set of $U U$-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{F}$ such that P and Q belong to the same $U U$-equivalence class. If P does not contain occurrences of $U U$, then we choose $Q=(U D)^{k} \in \mathcal{F}$ where $k=|P| / 2$. Otherwise, we decompose
$P=\alpha_{0} U^{k_{1}} \alpha_{1} U^{k_{2}} \ldots \alpha_{r-1} U^{k_{r}} \alpha_{r}$ where $r \geqslant 1, k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$, and such that all occurrences of $U U$ in P belong necessarily to a run $U^{k_{i}}$ for some i.

We set $Q=(U D)^{\ell_{0}} U^{k_{1}} \beta_{1} U^{k_{2}} \ldots \beta_{r-1} U^{k_{r}} \beta_{r}$ where $\ell_{0}=\left|\alpha_{0}\right|$, and for $1 \leqslant i \leqslant r-1$, $\beta_{i}=(D U)^{\frac{t_{i}-1}{2}} D$ if $t_{i}=\left|\alpha_{i}\right|$ is odd, $\beta_{i}=(D U)^{\frac{t_{i}-2}{2}} D D$ otherwise; finally, we set $\beta_{r}=(D U)^{\frac{t_{r}-1}{2}} C_{s}$ if $t_{r}=\left|\alpha_{r}\right|$ is odd, and otherwise, $\beta_{r}=(D U)^{\frac{t_{r}-2}{2}} D C_{s}$ with $s \geqslant 1$ is chosen so that Q ends on the x-axis.

We have $Q \in \mathcal{F}$ so that P and Q belong to the same $U U$-equivalence class. It is straightforward to see that if P and Q are two paths in \mathcal{F} lying in the same class, then $P=Q$.

Theorem 3.2 The o.g.f. with respect to the length for the set \mathcal{F} is given by

$$
F(x)=\frac{x-1}{(x+1)\left(x^{3}-x^{2}+2 x-1\right)} .
$$

The series expansion of $F(x)$ is

$$
1+x^{2}+x^{3}+3 x^{4}+4 x^{5}+8 x^{6}+13 x^{7}+24 x^{8}+41 x^{9}+73 x^{10}+127 x^{11}+O\left(x^{12}\right) .
$$

Proof. Due to the definition of \mathcal{F}, we have $F(x)=\frac{1}{1-x^{2}}+\frac{1}{1-x^{2}} \cdot \frac{1}{1-\frac{x^{3}}{(1-x)^{2}}} \frac{x^{3}}{(1-x)^{2}}$. A simple calculation completes the proof.

Remark 3.1 The coefficient f_{n} of x^{n} in $F(x)$ satisfies $f_{n}=f_{n-1}+f_{n-2}+f_{n-4}$ with $f_{0}=1, f_{1}=0, f_{2}=1, f_{3}=1$, which generates the sequence A347493 in [12]. An asymptotic approximation of f_{n} is

$$
\begin{aligned}
& \qquad f_{n} \sim \frac{(a-1)\left(a^{2}-a+2\right)^{n}}{a(a+1)\left(-3 a^{2}+2 a-2\right)} \approx 0.26212 \cdot 1.75487^{n}, \\
& \text { where } a=\frac{(44+12 \sqrt{69})^{2 / 3}+2(44+12 \sqrt{69})^{1 / 3}-20}{6(44+12 \sqrt{69})^{1 / 3}} .
\end{aligned}
$$

3.2 Pattern $U D$

Let \mathcal{G} be the set of paths $P \in \mathcal{E}$ such that either :
(i) $P=(U D)^{k}$ for some $k \geqslant 0$, or
(ii) $P=(U D)^{\ell} U^{k} C_{k}(U D)^{m}$ with $\ell, m \geqslant 0$ and $k \geqslant 2$, or
(iii) $P=(U D)^{\ell_{0}} U^{k_{1}}(U D)^{\ell_{1}} U^{k_{2}}(U D)^{\ell_{2}} \ldots U^{k_{r}}(U D)^{\ell_{r}} U^{k_{r+1}} C_{s}(U D)^{\ell_{r+1}}$ with $r \geqslant 1$, $\ell_{0}, \ell_{r+1} \geqslant 0, k_{i} \geqslant 1$ for $1 \leqslant i \leqslant r, k_{r+1} \geqslant 0, \ell_{i} \geqslant 1$ for $1 \leqslant i \leqslant r$, and $s \geqslant 1$ is so that the path ends on the x-axis (note that s can be one).

Theorem 3.3 There is a bijection between \mathcal{G} and the set of $U D$-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{G}$ such that P and Q belong to the same $U D$-equivalence class. If P satisfies the case (i), then we obviously set $Q=P$. If $P=(U D)^{\ell} \alpha(U D)^{m}$ with $l, m \geqslant 0$ and α is a nonempty path in \mathcal{E} avoiding $U D$, then we set $Q=(U D)^{\ell} U^{k} C_{k}(U D)^{m}$. Otherwise, we decompose $P=(U D)^{\ell_{0}} \alpha_{1}(U D)^{\ell_{1}} \alpha_{2}(U D)^{\ell_{2}} \ldots \alpha_{r}(U D)^{\ell_{r}} \alpha_{r+1}$ with all α_{i} being non-empty partial paths avoiding $U D$ (except α_{r+1} that can be empty). If $\left|\alpha_{r+1}\right|>1$ then we set $Q=(U D)^{\ell_{0}} U^{k_{1}}(U D)^{\ell_{1}} U^{k_{2}}(U D)^{\ell_{2}} \ldots U^{k_{r}}(U D)^{\ell_{r}} U^{k_{r+1}} C_{s}$ where $k_{i}=\left|\alpha_{i}\right|$ and $k_{r+1}+1=\left|\alpha_{r+1}\right|$; otherwise, if $\left|\alpha_{r+1}\right|=0$ then we set $Q=(U D)^{\ell_{0}} U^{k_{1}}(U D)^{\ell_{1}} U^{k_{2}}(U D)^{\ell_{2}} \ldots U^{k_{r}-1} C_{s}(U D)^{\ell_{r}}$ where $k_{i}=\left|\alpha_{i}\right|$ and s is so that Q ends on the x-axis. For all these cases, we have $Q \in \mathcal{G}$ so that P and Q belong to the same $U D$-equivalence class. Due to the form of a path in \mathcal{G}, if P and Q are two paths in \mathcal{G} lying in the same $U D$-equivalence class, the $P=Q$.

Theorem 3.4 The o.g.f. with respect to the length for the set \mathcal{G} is given by

$$
G(x)=\frac{2 x^{3}-2 x+1}{\left(1-x^{2}-x\right)(1-x)^{2}(x+1)} .
$$

The series expansion of $G(x)$ is

$$
1+x^{2}+x^{3}+3 x^{4}+5 x^{5}+10 x^{6}+17 x^{7}+30 x^{8}+50 x^{9}+84 x^{10}+138 x^{11}+O\left(x^{12}\right)
$$

Proof. According to the different cases in the definition of $\mathcal{G}, G(x)$ is given by:

$$
1+\frac{x^{2}}{1-x^{2}}+\frac{1}{1-x^{2}} \frac{x^{3}}{1-x} \frac{1}{1-x^{2}}+\frac{1}{1-x^{2}} \frac{R(x)}{1-R(x)} \frac{x}{1-x} \frac{1}{1-x^{2}}
$$

where $R(x)=\frac{x^{3}}{(1-x)\left(1-x^{2}\right)}$ is the o.g.f. that counts the paths of the form $U^{k}(U D)^{\ell}$ with $k, \ell \geqslant 1$.

Remark 3.2 The coefficient g_{n} of x^{n} in $G(x)$ satisfies $g_{n}=2 g_{n-1}+g_{n-2}-3 g_{n-3}+g_{n-5}$ for $n>4$ with $g_{1}=0, g_{0}=g_{2}=g_{3}=1, g_{4}=3$, which generates the sequence A215004 in [12]. An asymptotic approximation of g_{n} is

$$
g_{n} \sim \frac{4(5-2 \sqrt{5})}{5(\sqrt{5}-3)^{2}} \cdot\left(\frac{\sqrt{5}+1}{2}\right)^{n} \approx 0.72360 \cdot 1.61803^{n}
$$

3.3 Pattern $U C$

In this section, two paths are $U C$-equivalent whenever they coincide on all their occurrences $U C_{k}$ for $k \geqslant 2$. For instance, $U U D U C_{2}$ and $U D U U C_{2}$ are $U C$-equivalent, while $U D U U C_{2}$ and $U U U U C_{4}$ are not.

Let \mathcal{I}_{1} be the set of paths of length $n \geqslant 0, n \notin\{1,3\}$, defined by either
(i) $(U D)^{\frac{n}{2}}$ if n is even, or
(ii) $(U D)^{\frac{n-5}{2}} U U U D C_{2}$ if is n is odd.

Let \mathcal{I} be the set consisting of the union of \mathcal{I}_{1} with the set of paths of the form $\alpha_{1} U^{k_{1}} C_{k_{1}} \alpha_{2} U^{k_{2}} C_{k_{2}} \ldots \alpha_{r} U^{k_{r}} C_{k_{r}} \alpha_{r+1}$ where $r \geqslant 1$, all values k_{i} are at least 2, and all α_{i} are in \mathcal{I}_{1}.

Theorem 3.5 There is a bijection between \mathcal{I} and the set of $U C$-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{I}$ such that P and Q belong to the same $U C$-equivalence class. If P does not contain any pattern $U C$, then we set $Q=(U D)^{\frac{n}{2}}$ if n is even, and $Q=(U D)^{\frac{n-5}{2}} U U U D C_{2}$ otherwise. If P contains $r \geqslant 1$ occurrences of $U C$, then we decompose $P=\alpha_{1} U C \alpha_{2} U C \ldots \alpha_{r} U C \alpha_{r+1}$ where all α_{i} are paths avoiding $U C$. Showing the size of every catastrophes, we obtain the decomposition $P=\alpha_{1} U C_{k_{1}} \alpha_{2} U C_{k_{2}} \ldots \alpha_{r} U C_{k_{r}} \alpha_{r+1}$ where $k_{i} \geqslant 2$ for $1 \leqslant i \leqslant r$.

We set $Q=\beta_{1} U^{k_{1}} C_{k_{1}} \beta_{2} U^{k_{2}} C_{k_{2}} \ldots \beta_{r} U^{k_{r}} C_{k_{r}} \beta_{r+1}$ where all β_{i} are in \mathcal{I}_{1} (all β_{i} are entirely determined by the length of each α_{i}). We have $Q \in \mathcal{I}$ so that P and Q belong to the same $U C$-equivalence class. Obviously, due to the definition of \mathcal{I}, if P and Q belong to \mathcal{I} in the same $U C$-equivalence class, then $P=Q$.

Theorem 3.6 The o.g.f. with respect to the length for the set \mathcal{I} is given by

$$
I(x)=\frac{x^{5}-2 x^{4}+2 x^{3}-2 x^{2}+2 x-1}{x^{7}-x^{6}+x^{5}-x^{4}+x^{3}-x^{2}+2 x-1} .
$$

The series expansion of $I(x)$ is

$$
1+x^{2}+x^{3}+2 x^{4}+4 x^{5}+5 x^{6}+9 x^{7}+15 x^{8}+24 x^{9}+40 x^{10}+65 x^{11}+O\left(x^{12}\right)
$$

Proof. The o.g.f. for \mathcal{I}_{1} is $I_{1}(x)=\frac{1}{1-x}-x-x^{3}$ and the o.g.f. for \mathcal{I} is $I_{1}(x)+I_{1}(x) \cdot \frac{I_{2}(x)}{1-I_{2}(x)}$ where $I_{2}(x)=\frac{I_{1}(x) x^{3}}{1-x}$ is the o.g.f. of a nonempty sequence of terms of the form $\alpha U^{k} C_{k}$ with $\alpha \in \mathcal{I}_{1}$ and $k \geqslant 2$.

Remark 3.3 The coefficient i_{n} of x^{n} in $I(x)$ satisfies $i_{n}=2 i_{n-1}-i_{n-2}+i_{n-3}-i_{n-4}+$ $i_{n-5}-i_{n-6}+i_{n-7}$ for $n \geqslant 7$ with $i_{0}=1, i_{1}=0, i_{2}=1, i_{3}=1, i_{4}=2, i_{5}=4$, and $i_{6}=5$. This sequence does not appear in [12]. An asymptotic approximation of i_{n} is

$$
i_{n} \sim 0.28134 \cdot 1.64072^{n} .
$$

3.4 Pattern $D C$

In this section, two paths are $D C$-equivalent whenever they coincide on all their occurrences $D C_{k}$ for $k \geqslant 2$.

Let \mathcal{J}_{1} be the set of paths of length $n \geqslant 0, n \neq 1$, defined by either
(i) $(U D)^{\frac{n}{2}}$ if n is even, or
(ii) $(U D)^{\frac{n-3}{2}} U U C_{2}$ if is n is odd.

Let \mathcal{J} be the set consisting of the union of \mathcal{J}_{1} with the set of paths of the form $\alpha_{1} U^{k_{1}+1} D C_{k_{1}} \alpha_{2} U^{k_{2}+1} D C_{k_{2}} \ldots \alpha_{r} U^{k_{r}+1} D C_{k_{r}} \alpha_{r+1}$ where $r \geqslant 1$, all values k_{i} are at least 2 , and all α_{i} are in \mathcal{J}_{1}.

Theorem 3.7 There is a bijection between \mathcal{J} and the set of $D C$-equivalence classes of \mathcal{E}.

Proof. The proof is obtained mutatis mutandis as for Theorem 3.5.
Theorem 3.8 The o.g.f. with respect to the length for the set \mathcal{J} is given by

$$
J(x)=\frac{x^{3}-2 x^{2}+2 x-1}{x^{7}-x^{6}+x^{5}-x^{2}+2 x-1} .
$$

The series expansion of $J(x)$ is

$$
1+x^{2}+x^{3}+x^{4}+2 x^{5}+2 x^{6}+4 x^{7}+6 x^{8}+9 x^{9}+14 x^{10}+20 x^{11}+O\left(x^{12}\right) .
$$

Proof. The o.g.f. for \mathcal{J}_{1} is $J_{1}(x)=\frac{1}{1-x}-x$ and the o.g.f. for \mathcal{J} is $J_{1}(x)+J_{1}(x) \cdot \frac{J_{2}(x)}{1-J_{2}(x)}$ where $J_{2}(x)=\frac{J_{1}(x) x^{5}}{1-x}$ is the o.g.f. of a nonempty sequence of terms of the form $\alpha U^{k+1} D C_{k}$ with $\alpha \in \mathcal{J}_{1}$ and $k \geqslant 2$.

Remark 3.4 The coefficient j_{n} of x^{n} in $J(x)$ satisfies $j_{n}=2 j_{n-1}-j_{n-2}+j_{n-5}-$ $j_{n-6}+j_{n-7}$ for $n \geqslant 7$ with $j_{0}=1, j_{1}=0, j_{2}=j_{3}=j_{4}=1, j_{5}=2, j_{6}=2$ which is not in [12]. An asymptotic approximation of j_{n} is

$$
j_{n} \sim 0.25317 \cdot 1.48698^{n}
$$

3.5 Pattern $C U$

In this section, two paths are $C U$-equivalent whenever they coincide on all their occurrences $C_{k} U$ for $k \geqslant 2$.

Let \mathcal{K}_{1} be the set of paths of even length defined by $(U D)^{k}$ for $k \geqslant 0$.
Let \mathcal{K}_{2} be the set of paths of length $n \neq 1$ defined by $(U D)^{k}, k \geqslant 1$, if n is even, and $(U D)^{k} U U C_{2}, k \geqslant 0$, if n is odd.
Let \mathcal{K} be the set consisting of the union of \mathcal{K}_{2} with the set of paths of the form $\beta_{1} U^{k_{1}} C_{k_{1}} \beta_{2} U^{k_{2}} C_{k_{2}} \ldots \beta_{r} U^{k_{r}} C_{k_{r}} \beta_{r+1}$ where $k_{i} \geqslant 2$ for $1 \leqslant i<r$, and for $1 \leqslant i<r+1$, $\beta_{i} \in \mathcal{K}_{1}$, and β_{r+1} is a path from \mathcal{K}_{2}.

Theorem 3.9 There is a bijection between \mathcal{K} and the set of $C U$-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{K}$ such that P and Q belong to the same $C U$-equivalence class. If P does not contain any pattern $C U$, then we set $Q=(U D)^{\frac{n}{2}}$ whenever $n=|P|$ is even, and we set $Q=(U D)^{\frac{n-3}{2}} U U C_{2}$ otherwise; in both cases $Q \in \mathcal{K}_{2}$. If P contains $r \geqslant 1$ occurrences of $C U$, then we decompose $P=$ $\alpha_{1} C U \alpha_{2} C U \ldots \alpha_{r} C U \alpha_{r+1}$ where all α_{i} are paths avoiding $C U$. Showing the size of every catastrophe, we obtain the decomposition $P=\alpha_{1} C_{k_{1}} U \alpha_{2} C_{k_{2}} U \ldots \alpha_{r} C_{k_{r}} U \alpha_{r+1}$ where all k_{i} are at least 2 . So, we set $Q=\beta_{1} U^{k_{1}} C_{k_{1}} \beta_{2} U^{k_{2}} C_{k_{2}} \ldots \beta_{r} U^{k_{r}} C_{k_{r}} \beta_{r+1}$ where $\left|\alpha_{1}\right|=\left|\beta_{1}\right|,\left|\alpha_{i}\right|+1=\left|\beta_{i}\right|+k_{i}$ for $1<i<r+1,\left|\alpha_{r+1}\right|+1=\left|\beta_{r+1}\right|$, and

- for $1 \leqslant i<r+1, \beta_{i} \in \mathcal{K}_{1}$;
- β_{r+1} is a path from \mathcal{K}_{2}.

We have $Q \in \mathcal{K}$ so that P and Q belong to the same $C U$-equivalence class. Obviously, due to the definition of \mathcal{K}, if P and Q belong to \mathcal{K} in the same $C U$ equivalence class, then $P=Q$.

Theorem 3.10 The o.g.f. with respect to the length for the set \mathcal{K} is given by

$$
K(x)=\frac{x^{4}+x-1}{x^{2}+x-1} .
$$

The series expansion of $K(x)$ is

$$
1+x^{2}+x^{3}+x^{4}+2 x^{5}+3 x^{6}+5 x^{7}+8 x^{8}+13 x^{9}+21 x^{10}+34 x^{11}+O\left(x^{12}\right)
$$

Proof. Due to the definition of \mathcal{K}, the o.g.f. $K(x)$ is given by

$$
K(x)=\frac{1}{1-x}-x+\frac{1}{1-x^{2}} \cdot \frac{1}{1-\frac{x^{3}}{(1-x)\left(1-x^{2}\right)}} \cdot \frac{x^{3}}{1-x} \cdot \frac{x^{2}}{1-x} .
$$

Remark 3.5 The coefficient k_{n} of x^{n} in $K(x)$ satisfies $k_{n}=k_{n-1}+k_{n-2}$ for $n \geqslant 5$ with $k_{0}=1, k_{1}=0, k_{2}=k_{3}=k_{4}=1$ which is a shift of the Fibonacci sequence A000045 in [12]. An asymptotic approximation of k_{n} is

$$
k_{n} \sim \frac{2(\sqrt{5}-2)}{5-\sqrt{5}} \cdot\left(\frac{2}{\sqrt{5}-1}\right)^{n} \approx 0.17082 \cdot 1.61803^{n}
$$

3.6 Pattern $D U$

Let \mathcal{L} be set of paths $P \in \mathcal{E}$ such that

$$
P=U^{\ell_{1}}(D U)^{k_{1}} U^{\ell_{2}}(D U)^{k_{2}} \ldots U^{k_{r}}(D U)^{k_{r}} U^{\ell_{r+1}} C_{s}
$$

with $r \geqslant 1, \ell_{i}, k_{i} \geqslant 1$ for $1 \leqslant i \leqslant r, \ell_{r+1} \geqslant 0$, and s is so that the path ends on the x-axis (note that s can be 1 , and in this case $C_{1}=D$).

Theorem 3.11 There is a bijection between \mathcal{L} and the set of $D U$-equivalence classes of \mathcal{E}.

Proof. First, we prove that for every $P \in \mathcal{E}$ there is $Q \in \mathcal{G}$ such that P and Q belong to the same $D U$-equivalence class. We decompose $P=\alpha_{1}(D U)^{k_{1}} \alpha_{2}(D U)^{k_{2}} \alpha_{3}(D U)^{k_{3}} \ldots$ $\alpha_{r}(D U)^{k_{r}} \alpha_{r+1}$ with all α_{i} being non-empty paths avoiding $D U$, with $r \geqslant 0$, and all k_{i} are at least one. Then we set

$$
Q=U^{\ell_{1}}(D U)^{k_{1}} U^{\ell_{2}}(D U)^{k_{2}} U^{\ell_{3}}(D U)^{k_{3}} \ldots U^{\ell_{r}}(D U)^{k_{r}} U^{\ell_{r+1}-1} C_{s}
$$

where $\ell_{i}=\left|\alpha_{i}\right|$, and where s is so that the path ends on the x-axis. For all these cases, we have $Q \in \mathcal{L}$ so that P and Q belong to the same $D U$-equivalence class. Due to the form of a path in \mathcal{L}, if P and Q are two paths in \mathcal{L} lying in the same $D U$-equivalence class, then $P=Q$.

Theorem 3.12 The o.g.f. with respect to the length for the set \mathcal{L} is given by

$$
L(x)=\frac{1-x}{1-x-x^{2}} .
$$

The series expansion of $L(x)$ is

$$
1+x^{2}+x^{3}+2 x^{4}+3 x^{5}+5 x^{6}+8 x^{7}+13 x^{8}+21 x^{9}+34 x^{10}+55 x^{11}+O\left(x^{12}\right)
$$

Proof. According to the definition of \mathcal{L} and handling separately the cases where $r=1$ and $r \geqslant 2$, the o.g.f. $L(x)$ is given by:

$$
1+\frac{x^{2}}{1-x^{2}}+\frac{R(x)}{1-R(x)} \cdot \frac{x}{1-x}
$$

where $R(x)=\frac{x^{3}}{(1-x)\left(1-x^{2}\right)}$ is the o.g.f. that counts paths of the form $U^{\ell}(D U)^{k}$ with $k, \ell \geqslant 1$.

Remark 3.6 The coefficient ℓ_{n} of x^{n} in $G(x)$ satisfies $\ell_{n}=\ell_{n-1}+\ell_{n-2}$ for $n \geqslant 3$ with $\ell_{0}=1, \ell_{1}=0, \ell_{2}=1$, which generates the sequence A212804 in [12] (a variant of the well known Fibonacci sequence A000045). An asymptotic approximation of ℓ_{n} is

$$
\ell_{n} \sim \frac{(\sqrt{5}-3)}{5-\sqrt{5}} \cdot\left(\frac{2}{\sqrt{5}-1}\right)^{n} \approx 0.27639 \cdot 1.61803^{n}
$$

3.7 Pattern $D D$

In [2], the authors exhibited a set $\overline{\mathcal{A}}$ (denoted \mathcal{A} in [2]) of representatives for the $D D$-equivalence classes of Dyck paths: $\overline{\mathcal{A}}$ consists of Dyck paths P satisfying

Condition (C): P avoids $U U D U$ and the minimal ordinate reached by every occurrence of $U D U$ is at most one (i.e. the height of every occurrence of $U D U$ is at most 1).
For a Dyck path P, we denote by $\psi(P)$ the unique path in $\overline{\mathcal{A}}$ which is $D D$-equivalent to P. In [2], it is shown how $\psi(P)$ can be constructed from P after several transformations preserving the positions of all occurrences of $D D$. The following proposition extends this result for the set \mathcal{D}^{\prime} of Dyck paths with only one catastrophe C_{k} at the end.

Proposition 3.1 For any path $P \in \mathcal{D}^{\prime}$ ending with catastrophe $C_{k}, k \geqslant 2$, there is a unique path in \mathcal{D}^{\prime}, denoted $\psi(P)$, which is $D D$-equivalent to P, ending with catastrophe C_{k} (the same k as for P), and satisfying Condition (C).

Proof. Let Q be the Dyck path obtained from P by replacing C_{k} with D^{k}. Using [2], there is a unique path $\psi(Q)$ in $\overline{\mathcal{A}}$ in the class of Q. Replacing the last D^{k} of $\psi(Q)$ with C_{k}, there is a unique Dyck path with only catastrophe C_{k} at the end equivalent to P.

Lemma 3.1 Let P be a path in \mathcal{E}. If P contains at least two catastrophes, then there exists $Q \in \mathcal{E}$ in the class of P, such that Q has only one catastrophe.

Proof. We obtain Q from P by replacing with U every catastrophe, except the last, and by increasing the size of the last catastrophe so that $Q \in \mathcal{E}$. See Figure 2 for an example with two catastrophes.

Figure 2: Example for Lemma 3.1 with two catastrophes.
Considering this previous lemma, we can focus our study on the set of Dyck paths with at most one catastrophe. Recall that $\mathcal{D}^{\prime \prime}$ is the set of paths in \mathcal{E} having only one catastrophe (see Section 2.2).
Lemma 3.2 Let P be a path of length n in $\mathcal{D}^{\prime \prime}$ (i.e. P contains only one catastrophe). The size of the catastrophe and n have different parity.

Proof. For any Dyck path in $\mathcal{D}^{\prime \prime}$ having the catastrophe of size k, the number of U minus the number of D equals k, which implies that the number of U and D (which is equal to $n-1$) has the same parity as k.

In the following, for a given path P, a D-step will be called isolated if and only if it does not lie in an occurrence of $D D$.

Lemma 3.3 Let P be a path in $\mathcal{D}^{\prime \prime}$ having its catastrophe of size $k \geqslant 2$. We have $P=Q C_{k} R$ where R is a Dyck path. If R contains isolated D-steps, then there is a path in $\mathcal{D}^{\prime \prime}$, $D D$-equivalent to P, with a catastrophe C_{k+2} of size $k+2$, and such that every D-step on the right of C_{k+2} is not isolated.

Proof. First, we construct $P^{\prime}=Q^{\prime} C_{k} R^{\prime}$, where $Q^{\prime} C_{k}$ is the result of application of Proposition 3.1 on $Q C_{k}$ and R^{\prime} is obtained applying ϕ from [2] on R. It implies that P^{\prime} and P are $D D$-equivalent and this construction ensures that the height of the rightmost isolated D step in P^{\prime} is at most one. After this, we distinguish three cases according to the position and the height of the rightmost isolated D-step.

- if $R^{\prime}=R_{1} U D$, then the paths $Q^{\prime} U R_{1} U C_{k+2}$ and P are equivalent;

- if $R^{\prime}=R_{1} U D U R_{2}$ where $U R_{2}$ is a Dyck path, then $Q^{\prime} U R_{1} U C_{k+2} U R_{2}$ and P are equivalent;

- if $R^{\prime}=R_{1} U D U R_{2}$ where $U U R_{2}$ is a Dyck path then $Q^{\prime} U R_{1} C_{k+2} U U R_{2}$ and P are equivalent.

Lemma 3.4 Let P be a path in $\mathcal{D}^{\prime \prime}$ satisfying Condition (C) and having its catastrophe of size $k \geqslant 4$. Then, there is a path $Q \in \mathcal{D}^{\prime \prime}$, equivalent to P, having its catastrophe of size $k-2$, and such that C_{k} and C_{k-2} are in the same position in P and Q, respectively.

Proof. Before describing the construction of Q, it is worth noticing the following fact. There is an occurrence of $U U U$ at height $k-3$ on the left of C_{k} in P. Indeed, let us consider the rightmost U at height $k-3$ on the left of C_{k}; clearly it necessarily precedes a step U which constitutes an occurrence of $U U$ at height $k-3$. Moreover, since P avoids $U U D U$, the two steps $U U$ are necessarily followed by another step U, and P can be decomposed $P=P_{1} U U U P_{2} C_{k} P_{3}$ where P_{1} is a prefix of a Dyck path ending at height $k-3, U P_{2} D$ is a Dyck path and P_{3} is a Dyck path. We complete the proof by setting $Q=P_{1} U D U P_{2} C_{k-2} P_{3}$. See Figure 3 for an illustration of this construction.

Figure 3: Illustration for Lemma 3.4.

3.7.1 The case of odd length

Let \mathcal{A}^{\prime} be the subset of paths in $\overline{\mathcal{A}}$ avoiding $U D U$, and not ending with $U D$, which also is the set of paths in $\overline{\mathcal{A}}$ without isolated D-steps. Let \mathcal{A}_{2} be the set of paths satisfying Condition (C) and having only one catastrophe C_{2} at the end.

Proposition 3.2 A set of representatives of the $D D$-equivalence classes of odd length Dyck paths with catastrophes, is the set \mathcal{R}_{1} of paths $R=A A^{\prime}$ where $A \in \mathcal{A}_{2}$ and $A^{\prime} \in \mathcal{A}^{\prime}$.

Proof. First, let us prove that for any path $P \in \mathcal{E}$, there is a path $Q \in \mathcal{R}_{1}$ lying in the same class. We obtain Q by applying the following process: (i) we apply Lemma 3.1; (ii) we apply Lemma 3.3; (iii) we apply ψ extended to Dyck paths with only one catastrophe (see Proposition 3.1); (iv) we apply Lemma 3.4 and Proposition 3.1, and we repeat it until the size of the catastrophe reaches 2 (thanks to Lemma 3.2). In the case where $U D$ precedes C_{2}, i.e. $Q=Q_{1} U D C_{2} Q_{2}$, we replace the path with $Q_{1} U U C_{4} Q_{2}$ (see Fig. 4) and we apply Lemma 3.4 and Proposition 3.1.

Figure 4: Illustration for Proposition 3.2.

Now, it suffices to prove that two different paths Q and Q^{\prime} in \mathcal{R}_{1} with the same length cannot belong to the same class. Let us assume that Q and Q^{\prime} lie in the same
class. We decompose $Q=R C_{2} S$ and $Q^{\prime}=R^{\prime} C_{2} S^{\prime}$. Suppose that $|S| \geqslant\left|S^{\prime}\right|$. Since S^{\prime} does not contain isolated D-steps, S^{\prime} is entirely determined by the positions of occurrences of $D D$, which implies that S has the form $S=T S^{\prime}$. Since S does not contain an isolated D-step, T cannot end with $U D$, and since Q is $D D$-equivalent to Q^{\prime} it cannot end with $D D$, which means that T is empty. So we have $|S|=\left|S^{\prime}\right|$ and then $S=S^{\prime}$. Using Proposition 3.1 for $R C_{2}$ and $R^{\prime} C_{2}$, we obtain $Q=Q^{\prime}$.

Theorem 3.13 (The case of odd length) The o.g.f. for the number of $D D$-equivalence classes of odd length paths in \mathcal{E} is given by:

$$
N(x)=\frac{8 x^{3}}{\left(x^{2}+\sqrt{1-3 x^{4}-2 x^{2}}+1\right)^{2}\left(-x^{4}+\left(1+x^{2}\right) \sqrt{1-3 x^{4}-2 x^{2}}-2 x^{2}+1\right)} .
$$

We have $N(x)=x^{3}+x^{5}+5 x^{7}+11 x^{9}+33 x^{11}+88 x^{13}+247 x^{15}+O\left(x^{16}\right)$.
Proof. By Proposition 3.2, it suffices to provide the o.g.f. $N(x)$ for $\mathcal{A}_{2} \times \mathcal{A}^{\prime}$ with respect to the length. Sets \mathcal{A}_{2} and \mathcal{A}^{\prime} are constructed as follows

$\mathcal{A}^{\prime}=\epsilon \quad \cup$

where $\mathcal{N}_{u d u}$ is the set of non-empty Dyck paths avoiding $U D U, \overline{\mathcal{A}}$ is the set of representatives for the $D D$-equivalence classes of Dyck paths, e.g. Dyck paths avoiding $U U D U$ and having all $U D U$ at height 0 or 1 , and \mathcal{B} is the set of Dyck paths having all $U D U$ on x-axis and not starting with $U D U$. From [2] it follows that

$$
\begin{aligned}
\bar{A}(x) & =\frac{1-x^{2}+\sqrt{-3 x^{4}-2 x^{2}+1}}{1+x^{6}+x^{4}-3 x^{2}-\left(x^{4}-1\right) \sqrt{-3 x^{4}-2 x^{2}+1}} \\
B(x) & =\frac{2-x^{2}-x^{4}+x^{2} \sqrt{-3 x^{4}-2 x^{2}+1}}{1-x^{2}+\sqrt{-3 x^{4}-2 x^{2}+1}}
\end{aligned}
$$

and from [2,13] we have $N_{u d u}(x)=\left(x^{2}-\sqrt{-3 x^{4}-2 x^{2}+1}+1\right) /\left(2 x^{2}\right)-1$.
Finally, we compute $N(x)=\bar{A}(x)\left(B(x)-x^{2}\right) A^{\prime}(x) x^{3} A^{\prime}(x)$ where $A^{\prime}(x)$ satisfies $A^{\prime}(x)=1+x^{2} N_{u d u}(x) A^{\prime}(x)$.

3.7.2 The case of even length

Proposition 3.3 A set of representatives of the DD-equivalence classes of even length Dyck paths with catastrophes is the set \mathcal{R}_{2} defined by the union of $\overline{\mathcal{A}}$ with the sets \mathcal{S}_{0} and \mathcal{S}_{1} defined below:

- \mathcal{S}_{0} is the set of Dyck paths $S=P D U U C_{3}$ where $P D U$ is a prefix of Dyck path satisfying condition (C), and ending at height 2 ,
- \mathcal{S}_{1} is the set of Dyck paths $S=P D D C_{3}$ where P is a prefix of Dyck path satisfying condition (C), and ending at height 5 .

Proof. Let P be a path in \mathcal{E}. If P does not contain any catastrophe, then using Lemma 1 from [2], there is a unique path in $\overline{\mathcal{A}}$ equivalent to P. Now, let us assume that P contains at least one catastrophe. We obtain Q by applying the following process: (i) we apply Lemma 3.1; we apply Lemma 3.3; we apply ψ (extended to Dyck paths with only one catastrophe); we apply Lemma 3.4 followed by Proposition 3.1 until the path contains only one catastrophe C_{3} (thanks to Lemma 3.2). We decompose the obtained path $Q=R C_{3} S$ where S is a Dyck path with no isolated D-step. With the same argument used at the beginning of the proof of Lemma 3.4, R is of the form $R=R^{\prime} U U U R^{\prime \prime}$ where R^{\prime} and $U R^{\prime \prime} D$ are Dyck paths.
(a) if $R^{\prime \prime}$ is empty, i.e. $R=R^{\prime} U U U$, we replace Q with $R^{\prime} U D U D S \in \overline{\mathcal{A}}$;

(b) if $R^{\prime \prime}=T U$ ends with U, i.e. $R=R^{\prime} U U U T U$, we replace Q with $R^{\prime} U D U T U D S$ $\in \overline{\mathcal{A}}$;

(c) if $R^{\prime \prime}=T U D$ ends with $U D$, i.e. $R=R^{\prime} U U U T U D$, we replace Q with $R^{\prime} U D U T U U C_{3} S$ (see the illustration below); In the case where T ends with U, we apply the transformation (a) and we obtain a path in $\overline{\mathcal{A}}$;

After applying all these transformations, the path is either in $\overline{\mathcal{A}}$, or it satisfies Condition (C) and contains only one catastrophe C_{3} that follows an occurrence $D U U$ or $D D$.

If S is empty then the path lies in \mathcal{R}_{2}. Otherwise, S does not contain isolated D-step and it starts necessarily with $U U$. In this case we set $S=U U S^{\prime}$ and make the catastrophe disappear as follows:
(d) if R ends at height 3 with $D U U$, we set $R=R^{\prime} D U U$ and replace Q with $R^{\prime} D U D U D U S^{\prime} \in \overline{\mathcal{A}}$;

(e) if R ends with $U U U T$, where $U T$ is a prefix of a Dyck path ending at height 1 and with $D D$, we set $R=R^{\prime} U U U T$ and replace Q by $R^{\prime} U D U T U D U S^{\prime}$.

Theorem 3.14 (The case of even length) The o.g.f. $V(x)$ for the number of $D D$ equivalence classes of even length paths in \mathcal{E} is given by:

$$
V(x)=\frac{4\left(x^{4}-x^{2}-1\right) \sqrt{-3 x^{4}-2 x^{2}+1}+8 x^{8}+20 x^{6}+8 x^{4}-4}{\left(\left(-x^{2}-1\right) \sqrt{-3 x^{4}-2 x^{2}+1}+x^{4}+2 x^{2}-1\right)\left(x^{2}+\sqrt{-3 x^{4}-2 x^{2}+1}+1\right)^{2}} .
$$

We have $V(x)=1+x^{2}+2 x^{4}+4 x^{6}+11 x^{8}+27 x^{10}+73 x^{12}+194 x^{14}+529 x^{16}+$ $1448 x^{18}+O\left(x^{19}\right)$.

Proof. By Proposition 3.3, it suffices to provide the o.g.f. $M(x)$ for $\overline{\mathcal{A}} \cup \mathcal{S}_{0} \cup \mathcal{S}_{1}$ with respect to the length. Sets \mathcal{S}_{0} and \mathcal{S}_{1} are constructed as follows:

where \mathcal{A}^{\prime} is the set of non-empty Dyck paths avoiding $U D U$ not ending with $U D, \overline{\mathcal{A}}$ is the set of representatives for the $D D$-equivalence classes of Dyck paths, e.g. Dyck paths avoiding $U U D U$ and having all $U D U$ at height 0 or 1 , and \mathcal{B} is the set of Dyck paths having all $U D U$ on x-axis and not starting with $U D U$.

Then, we have

$$
S_{0}(x)=x^{2} \cdot\left(\bar{A}(x)-1-x^{2} \cdot \bar{A}(x)-x^{4} \cdot \bar{A}(x)\right)
$$

and

$$
S_{1}(x)=x^{4} \cdot \bar{A}(x)\left(B(x)-x^{2}\right) A^{\prime}(x)\left(A^{\prime}(x)-1\right)
$$

which gives the claimed result after a simple calculation.

3.7.3 The general case

Combining Theorems 3.13 and 3.14, we deduce:
Theorem 3.15 The o.g.f. $L(x)$ for the number of $D D$-equivalence in \mathcal{E} is given by

$$
\frac{\left(4 x^{4}-4 x^{2}-4\right) \sqrt{-3 x^{4}-2 x^{2}+1}+8 x^{8}+20 x^{6}+8 x^{4}-8 x^{3}-4}{\left(\left(-x^{2}-1\right) \sqrt{-3 x^{4}-2 x^{2}+1}+x^{4}+2 x^{2}-1\right)\left(x^{2}+\sqrt{-3 x^{4}-2 x^{2}+1}+1\right)^{2}},
$$

and it satisfies the following equation: $x^{10}-x^{9}+4 x^{8}-3 x^{7}+5 x^{6}-5 x^{5}+2 x^{4}-$ $2 x^{3}+x^{2}-x+1+\left(-x^{10}+x^{9}-6 x^{8}+5 x^{7}-9 x^{6}+6 x^{5}-3 x^{4}+3 x^{3}+x-1\right) L(x)+$ $\left(x^{10}-x^{9}+4 x^{8}-3 x^{7}+5 x^{6}-3 x^{5}+2 x^{4}-x^{3}\right) L(x)^{2}=0$.

The first coefficients of $x^{n}, n \geqslant 2$, of the series expansion of $L(x)$ are $1,1,2,1,4,5$, $11,11,27,33,73,88,194,247, \ldots$, and they do not correspond to a part of a sequence listed in [12].

An asymptotic approximation of these coefficients is

$$
\begin{gathered}
\frac{41 \sqrt{2}}{2 \sqrt{\pi}} \cdot \frac{\sqrt{3}^{n+1}}{n^{\frac{3}{2}}} \text { for } n \text { even, and } \\
\frac{135 \sqrt{2}}{4 \sqrt{\pi}} \cdot \frac{\sqrt{3}^{n}}{n^{\frac{3}{2}}} \text { otherwise. }
\end{gathered}
$$

Acknowledgments

The authors would like to thank the anonymous referees for useful remarks and comments. This work was supported in part by the project ANER ARTICO funded by Bourgogne-Franche-Comté region of France and ANR JCJC PICS.

References

[1] C. Banderier and M. Wallner, Lattice paths with catastrophes, Electron. Notes Discret. Math. 59 (2017), 131-146.
[2] J.-L. Baril and A. Petrossian, Equivalence of Dyck paths modulo some statistics, Discrete Math. 338 (2015), 655-660.
[3] J.-L. Baril and A. Petrossian, Equivalence classes of Motzkin paths modulo a pattern of length at most two, J. Integer Seq. 18 (2015), 15.7.1.
[4] J.-L. Baril and S. Kirgizov, Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths, Discrete Math. Lett. 7 (2021), 5-10.
[5] J.-L. Baril, S. Kirgizov and A. Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, Discrete Math. 342(4) (2019), 997-1005.
[6] J.-L. Baril, J. L. Ramírez and L. M. Simbaqueba, Equivalence classes of skew Dyck paths Modulo some patterns, Integers 22 (2022).
[7] E. Deutsch, Dyck path enumeration, Discrete Math. 204(1999), 167-202.
[8] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
[9] A. Krinik, G. Rubino, D. Marcus, R. J. Swift, H. Kasfy and H. Lam. Dual processes to solve single server systems, J. Stat. Plan. Inference 135 (1) (2005), 121-147.
[10] K. Manes, A. Sapounakis, I. Tasoulas and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, Discrete Math. 339 (10) (2016), 2557-2572.
[11] A. G. Orlov, On asymptotic behavior of the Taylor coefficients of algebraic functions, Sib. Math. J. 25 (5) (1994), 1002-1013.
[12] N. J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis. org/.
[13] Y. Sun, The statistic "number of udu's" in Dyck paths, Discrete Math. 287 (2004), 177-186.

