Sturm meets Fibonacci in Minkowski's fractal bar

Sergey Kirgizov joint work with Sergey Dovgal

Université de Bourgogne

Permutation patterns 2023, 3-7 July, hosted by the Université de Bourgogne

Generalized Fibonacci, k-bonacci

Initial terms: $0, \ldots, 0,0,1$,
$f_{n, 1}=f_{n-1,1}+f_{n-2,1}$, Fibonacci
$f_{n, 2}=f_{n-1,2}+f_{n-2,2}+f_{n-3,2}$, Tribonacci
$f_{n, 3}=f_{n-1,3}+f_{n-2,3}+f_{n-3,3}+f_{n-4,3}$, Tetranacci

目 Generalized Fibonacci numbers and associated matrices, 1960 E. P. Miles Jr.

国 Fibonacci-Tribonacci, 1963
M. Feinberg

Can we extend

the definition of $f_{n, k}$
to cover the case where k is
not an integer?

π-bonacci numbers?

- Knuth-Fibonacci, q-decreasing, and Sturmian words
- Generalization of the golden ratio, $\Phi(q), q \in \mathbb{R}^{+}$
- Link to the Stern-Brocot tree and Minkowski's ?(x)

Knuth-Fibonacci words are Binary words containing no occurrences of factor 1^{k}. They are enumerated by generalized Fibonacci numbers.

- Avoiding 11: Fibonacci, $a_{n}=a_{n-1}+a_{n-2}$
- Avoiding 111: Tribonacci, $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$

E The Art of Computer Programming, Volume 3 2nd ed., page 286, 1998, Donald Knuth

Knuth-Fibonacci words are Binary words containing no occurrences of factor 1^{k}. They are enumerated by generalized Fibonacci numbers.

- Avoiding 11: Fibonacci, $a_{n}=a_{n-1}+a_{n-2}$
- Avoiding 111: Tribonacci, $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$

E The Art of Computer Programming, Volume 3 2nd ed., page 286, 1998, Donald Knuth

Knuth-Fibonacci words are Binary words containing no occurrences of factor 1^{k}. They are enumerated by generalized Fibonacci numbers.

- Avoiding 11: Fibonacci, $a_{n}=a_{n-1}+a_{n-2}$
- Avoiding 111: Tribonacci, $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$

E The Art of Computer Programming, Volume 3 2nd ed., page 286, 1998, Donald Knuth

Sturmian words

Write 1 if the line intersects a horizontal edge, 0 in case of a vertical edge, 01 in case of a corner.
The resulting infinite word is $s(q)$, where $q \in \mathbb{R}^{+}$is a line's slope.

$s(\sqrt{2})=101011010110 \ldots$
$s\left(\frac{2}{3}\right)=0100101001 \ldots$

q-decreasing words

An n-length binary word is q-decreasing, $q \in \mathbb{R}^{+}$, if every of its length maximal factors of the form $0^{a} 1^{b}$ satisfies $a=0$ or $q \cdot a>b$.

$$
\cdots 1|\underbrace{000 \cdots \cdots 00}_{a} \underbrace{111 \cdots 11}_{b}| 0 \cdots
$$

Let $\mathcal{W}_{q, n}$ be the set of such words of length $n, \mathcal{W}_{q}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{q, n}$.

q-decreasing words

An n-length binary word is q-decreasing, $q \in \mathbb{R}^{+}$, if every of its length maximal factors of the form $0^{a} 1^{b}$ satisfies $a=0$ or $q \cdot a>b$.

$$
\cdots 1|\underbrace{000 \cdots \cdots 00}_{a} \underbrace{111 \cdots 11}_{b}| 0 \cdots
$$

Let $\mathcal{W}_{q, n}$ be the set of such words of length $n, \mathcal{W}_{q}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{q, n}$.

$$
\begin{aligned}
& \text { Ex. } \\
& 111001010110001 \text { is not } 2 \text {-decreasing }(2 \cdot 1 \ngtr 2) \\
& 01111 \text { is not } \pi \text {-decreasing }(\pi \cdot 1 \ngtr 4) \\
& 001111 \text { is } \pi \text {-decreasing }(\pi \cdot 2>4)
\end{aligned}
$$

1-decreasing words, \mathcal{W}_{1}

In particular, in a 1-decreasing word every run of 0 s is immediately followed by a strictly shorter run of 1 s .

$$
\begin{gathered}
\cdots 1|\underbrace{000 \cdots \cdots 0}_{a} \underbrace{111 \cdots 11}_{b}| 0 \cdots \\
\text { Let's count! } \begin{array}{c|ccccc}
n & 1 & 2 & 3 & 4 & \cdots \\
\hline & 2 & 3 & 5 & 8 & \text { Fibonacci }
\end{array}
\end{gathered}
$$

| | | | 0000 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 000 | |
| 0 | 0001 | | | |
| | | 0010 | | |
| 0 | 001 | | | |
| 1 | 10 | 100 | 1000 | |
| | 11 | 110 | 1001 | \cdots |
| | | 111 | 1100 | |
| | | | 1110 | |
| | | | 1111 | |

2-decreasing words, \mathcal{W}_{2}

$$
\begin{aligned}
& \cdots 1|\underbrace{000 \cdots \cdots 00}_{a} \underbrace{111 \cdots 11}_{b}| 0 \cdots \quad \text { where } 2 a>b \text { or } a=0 \\
& \text { Let's count! } n \left\lvert\, \begin{array}{ccccl}
n & 2 & 3 & 4 & \ldots \\
\hline & 2 & 4 & 7 & 13
\end{array}\right. \text { Tribonacci } \\
& 0000 \\
& 0001 \\
& 0010 \\
& 0000011 \\
& \begin{array}{llll}
& & 001 & 0100 \\
0 & 01 & 010 & 0101 \\
1 & 10 & 100 & 1000 \\
& 11 & 101 & 1001 \\
& & 110 & 1010 \\
& & 111 & 1100 \\
& & & 1101
\end{array} \\
& 1110 \\
& 1111
\end{aligned}
$$

q－decreasing words literature

国 A new paper in preparation with Sergey Dovgal．．．

E Fibonacci Cubes with Applications and Variations．
Ömer Eğecioğlu，Sandi Klavžar and Michel Mollard
World Scientific， 2023
国 Q－bonacci words and numbers．Sk，Fibonacci conference
https：／／kirgizov．link／talks／fiboconf．pdf
The Fibonacci Quarterly，2022，https：／／arxiv．org／abs／2201．00782
E．Combinatorial Gray codes－an updated survey，Torsten Mütze https：／／arxiv．org／pdf／2202．01280．pdf
to appear in Electronic Journal of Combinatorics
国 Asymptotic bit frequency in Fibonacci words．BKV，GASCom 2022
https：／／kirgizov．link／talks／gascom2022．pdf Pure Mathematics and Applications，2022，https：／／arxiv．org／abs／2106．13550
国 Gray codes for Fibonacci q－decreasing words．
Jean－Luc Baril，Sk and Vincent Vajnovszki
Theoretical Computer Science，2022，https：／／arxiv．org／abs／2010．09505
国 Fibonacci－run graphs I：Basic properties．Ömer Eğecioğlu and Vesna Iršič
Discrete Applied Mathematics，2021，https：／／arxiv．org／abs／2010．05518
且 Qubonacci words．BKV
Permutations patterns 2021，https：／／kirgizov．link／talks／qubonacci．pdf

From Sturmian prefixes starting, Traversing decreasing words, Discover a beautiful function, United in fractal of sherds!

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow \widehat{000011}
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0 : one empty word

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0: one empty word
Length 1: 1,

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0: one empty word
Length 1: $1, \widehat{0}$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0 : one empty word
Length 1: $1, \widehat{0}$
Length 2: $11,1 \hat{0}, \widehat{0}$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0 : one empty word
Length 1: $1, \widehat{0}$
Length 2: $11,10, \widehat{0} 0$
Length 3: 111, 110 $, 1 \widehat{0} 0, \widehat{001}, \widehat{0} 0 \widehat{0}$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0 : one empty word
Length 1: $1, \widehat{0}$
Length 2: $11,10, \widehat{0} 0$
Length 3: $111,11 \widehat{0}, 1 \widehat{0} 0, \widehat{001}, \widehat{0} 0 \widehat{0}$
Length 24: 11110 $\widehat{000000011 \widehat{00100000011}, \ldots . . ~}$

From Sturmian to q-decreasing

E.g., slope is $q=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$

Sturmian word $s(1 / \varphi)=0100101001001010 \ldots$ (aka Fibonacci word)

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
01 & \rightarrow \widehat{001} \\
01001 & \rightarrow 000011
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0 : one empty word
Length 1: 1, $\widehat{0}$
Length 2: $11,10, \widehat{0} 0$
Length 3: $111,11 \widehat{0}, 1 \widehat{0} 0, \widehat{001}, \widehat{0} 0 \widehat{0}$

Cards.: 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, 286, 448, ...

From Sturmian to q-decreasing. Natural case

E.g., slope is $q=2$

Sturmian word $s(2)=101101101101101 \ldots$

From Sturmian to q-decreasing. Natural case

E.g., slope is $q=2$

Sturmian word $s(2)=101101101101101$...

1. Construct q-suffixes from sturmian prefixes ending with 1

$$
\begin{aligned}
1 & \rightarrow 0 \hat{01} \\
101 & \rightarrow 00011 \\
1011 & \rightarrow 0.00111
\end{aligned}
$$

2. Allow $\hat{0}$ as q-suffix.
3. Construct q-decreasing words as a sequence of 1 s followed by a sequence of q-suffixes.

Length 0 : one empty word
Length 1: 1, $\widehat{0}$
Length 2: $11,1 \widehat{0}, \widehat{0}, \widehat{0}$
Length 3: 111, 11 $\widehat{0}, 1 \widehat{0}, 1 \widehat{0} \widehat{0}, \widehat{001}, \widehat{0} 0 \widehat{0}, \widehat{010}$
Length 23: 1111 $\widehat{00000011100110 \widehat{0} 01010}, \ldots$
Cards.: 1, 2, 4, 7, 13, 24, ...

General picture

Sturmian words

Every point is an infinite word

General picture

> The transformation just described

Sturmian words q-decreasing words

General picture

The transformation just described
Sturmian words $\longrightarrow q$-decreasing words \quad A bijection from "Gray codes for Fibonacci

Growth ratio

q-decreasing words. Crowth ratio.

An n-length binary word is q-decreasing, $q \in \mathbb{R}^{+}$, if every of its length maximal factors of the form $0^{a} 1^{b}$ satisfies $a=0$ or $q \cdot a>b$.

$$
\cdots 1|\underbrace{000 \cdots \cdots 00}_{a} \underbrace{111 \cdots 11}_{b}| 0 \cdots
$$

Let $\mathcal{W}_{q, n}$ be the set of such words of length n.
Let $\mathcal{W}_{q}=\bigcup_{n \in \mathbb{N}} \mathcal{W}_{q, n}$.

$$
\Phi(q)=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|} ?
$$

Consider the following function

$$
\Phi(q)=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|}
$$

Consider the following function

$$
\Phi(q)=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|}
$$

For $q=1$, we get the golden ratio
$\left(\mathcal{W}_{1, n}\right.$ is counted with the Fibonacci numbers).

Consider the following function

$$
\Phi(q)=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|}
$$

For $q=1$, we get the golden ratio
($\mathcal{W}_{1, n}$ is counted with the Fibonacci numbers).
For $q=2$, it is the tribonacci constant.

Consider the following function

$$
\Phi(q)=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|}
$$

For $q=1$, we get the golden ratio
($\mathcal{W}_{1, n}$ is counted with the Fibonacci numbers).
For $q=2$, it is the tribonacci constant.
For $q=5 / 3$?

Consider the following function

$$
\Phi(q)=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|}
$$

For $q=1$, we get the golden ratio
($\mathcal{W}_{1, n}$ is counted with the Fibonacci numbers).
For $q=2$, it is the tribonacci constant.
For $q=5 / 3$?
For $q=\varphi$?

GeneRalization of the golden ratio

GeneRalization of the golden ratio

$\lim _{n \rightarrow \infty} \frac{\left|\mathcal{W}_{q, n+1}\right|}{\left|\mathcal{W}_{q, n}\right|}$ as a function of q.

Fractal

Stern, Brocot and Minkowski

Mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$, it is used to construct the tree.
It is also called a freshman sum.

Stern, Brocot and Minkowski

Mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$, it is used to construct the tree.
It is also called a freshman sum.
$?(x)$ maps a rational to dyadic rational $\frac{x}{2^{y}}$

Minkowski's question-mark function

Then $?(x+1)=1+?(x)$ for $x>1$.

Intervals $(k /(k+1), 1]$ before rescaling

Intervals $(k /(k+1), 1]$, Minkowski's rescaling

Map x to ? (x).

$(k /(k+1), 1]$, regions rescaled and superimposed

Rescale y to be inside $[0,1]$.
Map x to ? (x) and rescale the result to be inside $[0,1]$

Different families of regions have different limits

Different families of regions have different limits

Different families of regions rescaled and superimposed

$(k /(k+1), 1]$

$(k /(1+2 k), 1 / 2]$

Where $\rho_{\frac{c}{d}}$ is the root of $1-x^{c+d}-\sum_{i=0}^{c-1} x^{1+i+\left\lfloor\frac{i d}{c}\right\rfloor}$.
E.g. $\rho_{1}=\frac{1}{\varphi}=\frac{2}{1+\sqrt{5}}$ is the root of $1-x^{2}-x$.

Any proofs?

$$
\begin{aligned}
& \text { G.f. } W_{q}(x)=\frac{1}{(1-x)\left(1-\sum_{i=0}^{\infty} x^{1+i+\left\lfloor\frac{i}{q}\right\rfloor}\right)} \\
& \text { If } q=\frac{c}{d} \in \mathbb{Q}^{+} \text {the g.f. is } \\
& W_{\frac{c}{d}}(x)=\frac{1-x^{c+d}}{(1-x)\left(1-x^{c+d}-\sum_{i=0}^{c-1} x^{1+i+\left\lfloor\frac{i d}{c}\right\rfloor}\right)}
\end{aligned}
$$

We represent polynomial denominators of generating functions as certains subsets of points in \mathbb{Z}^{2}...

We use Pick's Theorem and certain algebraico-analyticocombinatorial gymnastics to prove the results.

Open question: which jumps are higher?

Here is the sequence of positive rational numbers ordered by corresponding jumps of the function $\Phi(q)=\lim _{n \rightarrow \infty}\left|\mathcal{W}_{q, n+1}\right| /\left|\mathcal{W}_{q, n}\right|$

$$
1, \frac{1}{2}, 2, \frac{1}{3}, \frac{1}{4}, 3, \frac{2}{3}, \frac{1}{5}, \frac{1}{6}, \frac{3}{2}, \frac{1}{7}, 4, \frac{2}{5}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \frac{3}{4}, \frac{1}{11}, \frac{2}{7}, \frac{1}{12}, 5, \frac{3}{5}, \frac{1}{13}, \frac{4}{3}, \frac{1}{14}, \frac{2}{9}, \frac{1}{15}, \frac{1}{16}, ?
$$

Next term is ... ???

ArXiv preprint is coming soon!
We thank you so much
For staying in tune.

Minkowski's scaling

Minkowski's scaling

