Sturm meets Fibonacci in Minkowski's fractal bar

Sergey Kirgizov joint work with Sergey Dovgal

Université de Bourgogne

Permutation patterns 2023, 3-7 July, hosted by the Université de Bourgogne Initial terms: 0,...,0,0,1,

 $f_{n,1} = f_{n-1,1} + f_{n-2,1}$, Fibonacci

 $f_{n,2} = f_{n-1,2} + f_{n-2,2} + f_{n-3,2}$, Tribonacci

 $f_{n,3} = f_{n-1,3} + f_{n-2,3} + f_{n-3,3} + f_{n-4,3}$, Tetranacci

- Generalized Fibonacci numbers and associated matrices, 1960
 E. P. Miles Jr.
- Fibonacci-Tribonacci, 1963 M. Feinberg

Can we extend the definition of *f_{n,k}* to cover the case where *k* is not an integer?

π -bonacci numbers?

- Knuth-Fibonacci, *q*-decreasing, and Sturmian words
- Generalization of the golden ratio, $\Phi(q), q \in \mathbb{R}^+$
- Link to the Stern–Brocot tree and Minkowski's ?(*x*)

Me.A. Starn

Knuth-Fibonacci words are Binary words containing no occurrences of factor 1^k . They are enumerated by generalized Fibonacci numbers.

- Avoiding 11 : Fibonacci, $a_n = a_{n-1} + a_{n-2}$
- Avoiding 111 : Tribonacci, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$
- ...
- The Art of Computer Programming, Volume 3 2nd ed., page 286, 1998, Donald Knuth

Knuth-Fibonacci words are Binary words containing no occurrences of factor 1^k. They are enumerated by generalized Fibonacci numbers.

- Avoiding 11 : Fibonacci, $a_n = a_{n-1} + a_{n-2}$
- Avoiding 111 : Tribonacci, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$
- The Art of Computer Programming, Volume 3 2nd ed., page 286, 1998, Donald Knuth

• ...

Knuth-Fibonacci words are Binary words containing no occurrences of factor 1^k . They are enumerated by generalized Fibonacci numbers.

- Avoiding 11 : Fibonacci, $a_n = a_{n-1} + a_{n-2}$
- Avoiding 111 : Tribonacci, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$
- The Art of Computer Programming, Volume 3 2nd ed., page 286, 1998, Donald Knuth

...

0 1	01 00 10 11	011 010 000 001 101 100 110		Words avoiding 111
2	4	7	13	

Sturmian words

Write 1 if the line intersects a horizontal edge, 0 in case of a vertical edge, 01 in case of a corner.

The resulting infinite word is s(q), where $q \in \mathbb{R}^+$ is a line's slope.

q-decreasing words

An *n*-length binary word is *q*-decreasing, $q \in \mathbb{R}^+$, if every of its length maximal factors of the form $0^a 1^b$ satisfies a = 0 or $q \cdot a > b$.

$$\cdots 1 \mid \underbrace{000\cdots00}_{a} \underbrace{111\cdots11}_{b} \mid 0\cdots$$

Let $\mathcal{W}_{q,n}$ be the set of such words of length n, $\mathcal{W}_q = \bigcup_{n \in \mathbb{N}} \mathcal{W}_{q,n}$.

q-decreasing words

An *n*-length binary word is *q*-decreasing, $q \in \mathbb{R}^+$, if every of its length maximal factors of the form $0^a 1^b$ satisfies a = 0 or $q \cdot a > b$.

$$\cdots 1 \mid \underbrace{000\cdots00}_{a} \underbrace{111\cdots11}_{b} \mid 0\cdots$$

Let $\mathcal{W}_{q,n}$ be the set of such words of length n, $\mathcal{W}_q = \bigcup_{n \in \mathbb{N}} \mathcal{W}_{q,n}$.

Ex.

1110010101010101 is not 2-decreasing $(2 \cdot 1 \neq 2)$

```
01111 is not \pi-decreasing (\pi \cdot 1 \neq 4)
```

001111 is π -decreasing ($\pi \cdot 2 > 4$)

1-decreasing words, \mathcal{W}_1

In particular, in a 1-decreasing word every run of 0s is immediately followed by a strictly shorter run of 1s.

2-decreasing words, \mathcal{W}_2

q-decreasing words literature

A new paper in preparation with Sergey Dovgal...

- Fibonacci Cubes with Applications and Variations. Ömer Eğecioğlu, Sandi Klavžar and Michel Mollard World Scientific, 2023
- Q-bonacci words and numbers. Sk, Fibonacci conference https://kirgizov.link/talks/fiboconf.pdf The Fibonacci Quarterly, 2022, https://arxiv.org/abs/2201.00782
- Combinatorial Gray codes-an updated survey, Torsten Mütze https://arxiv.org/pdf/2202.01280.pdf to appear in Electronic Journal of Combinatorics
- Asymptotic bit frequency in Fibonacci words. BKV, GASCom 2022 https://kirgizov.link/talks/gascom2022.pdf Pure Mathematics and Applications, 2022, https://arxiv.org/abs/2106.13550
- Gray codes for Fibonacci q-decreasing words.
 Jean-Luc Baril, Sk and Vincent Vajnovszki
 Theoretical Computer Science, 2022, https://arxiv.org/abs/2010.09505
- Fibonacci-run graphs I: Basic properties. Ömer Eğecioğlu and Vesna Iršič Discrete Applied Mathematics, 2021, https://arxiv.org/abs/2010.05518
- Qubonacci words. BKV Permutations patterns 2021, https://kirgizov.link/talks/qubonacci.pdf

From Sturmian prefixes starting, Traversing decreasing words, Discover a beautiful function, United in fractal of sherds!

E.g., slope is
$$q = \frac{1}{\varphi} = \frac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word)

E.g., slope is
$$q=rac{1}{arphi}=rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) **1.** Construct *q*-suffixes from sturmian prefixes ending with 1

E.g., slope is
$$q=rac{1}{arphi}=rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$

E.g., slope is
$$q = \frac{1}{\varphi} = \frac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

E.g., slope is
$$q = \frac{1}{\varphi} = \frac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{000011}$

. . .

E.g., slope is
$$q=rac{1}{arphi}=rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

. . .

2. Allow $\hat{0}$ as *q*-suffix.

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{000011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

Length 0: one empty word

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\widehat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

```
Length 0: one empty word
Length 1: 1,
```

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

Length 0: one empty word Length 1: 1, $\hat{0}$

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

Length 0: one empty word Length 1: 1, $\hat{0}$ Length 2: 11, $1\hat{0}$, $\hat{0}\hat{0}$

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

Length 0: one empty word Length 1: 1, $\hat{0}$ Length 2: 11, 1 $\hat{0}$, $\hat{0}\hat{0}$ Length 3: 111, 11 $\hat{0}$, $\hat{1}\hat{0}\hat{0}$, $\hat{0}\hat{0}\hat{1}$, $\hat{0}\hat{0}\hat{0}$

E.g., slope is
$$q=rac{1}{arphi}=rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

```
Length 0: one empty word
Length 1: 1, 0
Length 2: 11, 10, 00
Length 3: 111, 110, 100, 001, 000
...
Length 24: 111100000001100100000011, ...
```

E.g., slope is
$$q = rac{1}{arphi} = rac{2}{1+\sqrt{5}}$$

Sturmian word $s(1/\varphi) = 0100101001001010...$ (aka Fibonacci word) 1. Construct *q*-suffixes from sturmian prefixes ending with 1 $01 \rightarrow \widehat{001}$ $01001 \rightarrow \widehat{00011}$

2. Allow $\hat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

```
Length 0: one empty word
Length 1: 1, 0
Length 2: 11, 10, 00
Length 3: 111, 110, 100, 001, 000
...
Length 24: 11110000000110010000011, ...
```

Cards.: 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, 286, 448, ...

From Sturmian to q-decreasing. Natural case

E.g., slope is q = 2

Sturmian word *s*(2) = 101101101101101...

From Sturmian to q-decreasing. Natural case

E.g., slope is q = 2

Sturmian word s(2) = 101101101101101...

1. Construct *q*-suffixes from sturmian prefixes ending with 1

 $1 \rightarrow 0\hat{1}$ $101 \rightarrow 00\hat{1}\hat{1}$ $1011 \rightarrow 00\hat{1}\hat{1}\hat{1}$

2. Allow $\widehat{0}$ as *q*-suffix.

3. Construct *q*-decreasing words as a sequence of 1s followed by a sequence of *q*-suffixes.

. . .

```
Length 0: one empty word

Length 1: 1, 0

Length 2: 11, 10, 00, 01

Length 3: 111, 110, 101, 100, 001, 000, 010

...

Length 23: 11110000011100110001010, ...

Cards.: 1, 2, 4, 7, 13, 24, ...
```

Sturmian words

Every point is an infinite word

General picture

General picture

The picture is draw in collaboration with Sima and Fedia. 12

Growth ratio

An *n*-length binary word is *q*-decreasing, $q \in \mathbb{R}^+$, if every of its length maximal factors of the form $0^a 1^b$ satisfies a = 0 or $q \cdot a > b$.

$$\cdots 1 \mid \underbrace{000\cdots00}_{a} \underbrace{111\cdots11}_{b} \mid 0\cdots$$

Let $\mathcal{W}_{q,n}$ be the set of such words of length *n*. Let $\mathcal{W}_q = \bigcup_{n \in \mathbb{N}} \mathcal{W}_{q,n}$. $\Phi(q) = \lim_{n \to \infty} \frac{|\mathcal{W}_{q,n+1}|}{|\mathcal{W}_{q,n}|}$?

Consider the following function

$$\Phi(q) = \lim_{n \to \infty} \frac{|\mathcal{W}_{q,n+1}|}{|\mathcal{W}_{q,n}|}$$

For q = 1, we get the golden ratio ($W_{1,n}$ is counted with the Fibonacci numbers).

For q = 1, we get the golden ratio ($W_{1,n}$ is counted with the Fibonacci numbers). For q = 2, it is the tribonacci constant.

For q = 1, we get the golden ratio ($W_{1,n}$ is counted with the Fibonacci numbers). For q = 2, it is the tribonacci constant. For q = 5/3 ?

For q = 1, we get the golden ratio ($W_{1,n}$ is counted with the Fibonacci numbers). For q = 2, it is the tribonacci constant. For q = 5/3 ? For $q = \varphi$?

Fractal

Stern, Brocot and Minkowski

Mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$, it is used to construct the tree. It is also called a *freshman sum*.

Stern, Brocot and Minkowski

Mediant of $\frac{a}{b}$ and $\frac{c}{d}$ is $\frac{a+c}{b+d}$, it is used to construct the tree. It is also called a *freshman sum*. ?(x) maps a rational to dyadic rational $\frac{x}{2y}$

Minkowski's question-mark function

Intervals (k/(k+1), 1] before rescaling

Intervals (k/(k + 1), 1], Minkowski's rescaling

Map x to ?(x).

(k/(k + 1), 1], regions rescaled and superimposed

Rescale y to be inside [0, 1]. Map x to ?(x) and rescale the result to be inside [0, 1]

Different families of regions have different limits

Different families of regions have different limits

Different families of regions rescaled and superimposed

G.f.
$$W_q(x) = \frac{1}{(1-x)\left(1-\sum_{i=0}^{\infty}x^{1+i+\left\lfloor\frac{i}{q}\right\rfloor}\right)}$$
.
If $q = \frac{c}{d} \in \mathbb{Q}^+$ the g.f. is
 $W_{\frac{c}{d}}(x) = \frac{1-x^{c+d}}{(1-x)\left(1-x^{c+d}-\sum_{i=0}^{c-1}x^{1+i+\left\lfloor\frac{id}{c}\right\rfloor}\right)}$.

We represent polynomial denominators of generating functions as certains subsets of points in \mathbb{Z}^2 ...

We use Pick's Theorem and certain algebraico-analyticocombinatorial gymnastics to prove the results. Open question: which jumps are higher?

corresponding jumps of the function $\Phi(q) = \lim_{n \to \infty} |\mathcal{W}_{q,n+1}| / |\mathcal{W}_{q,n}|$

 $1, \frac{1}{2}, 2, \frac{1}{3}, \frac{1}{4}, 3, \frac{2}{3}, \frac{1}{5}, \frac{1}{6}, \frac{3}{2}, \frac{1}{7}, 4, \frac{2}{5}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \frac{3}{4}, \frac{1}{11}, \frac{2}{7}, \frac{1}{12}, 5, \frac{3}{5}, \frac{1}{13}, \frac{4}{3}, \frac{1}{14}, \frac{2}{9}, \frac{1}{15}, \frac{1}{16}, \frac{2}{16}, \frac{1}{16}, \frac{1}{10}, \frac{1}{$

ArXiv preprint is coming soon! We thank you so much For staying in tune.

Minkowski's scaling

Minkowski's scaling

