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Abstract

We present a quite curious generalization of multi-step Fibonacci numbers. For
any positive rational q, we enumerate binary words of length n whose maximal factors
of the form 0a1b satisfy a = 0 or aq > b. When q is an integer we rediscover classical
multi-step Fibonacci numbers: Fibonacci, Tribonacci, Tetranacci, etc. When q is not
an integer, obtained recurrence relations are connected to certain restricted integer
compositions. We also discuss Gray codes for these words, and a possibly novel
generalization of the golden ratio.

1 Introduction
Multi-step generalization of Fibonacci numbers can be traced back to the works of Miles [12]
and 14-year old Feinberg [6]. A lot of different studies about these numbers appear after,
including the works of Flores [8], Miller [14], Dubeau [4] and Wolfram [17]. A bunch
of combinatorial objects are enumerated by these numbers. For instance, the Knuth’s
exercise [11, p. 286] shows that the set of length n binary words avoiding k consecutive
1s is enumerated by k-bonacci numbers respecting an = an−1 + an−2 + · · ·+ an−k, with
initial conditions a0 = 1, a−1 = 1, and aj = 0 for any j < −1.

Independently, in two recent papers [1, 5], a new (as far as we know) kind of restricted
binary words enumerated by generalized Fibonacci numbers was considered. For any
n ∈ N, Baril, Kirgizov and Vajnovszki [1] defined a set Wq,n, parameterized by a positive
natural number q, as follows:

Definition 1. Wq,n is the set binary words of length n such that for every maximal
consecutive subword (factor) of the form 0a1b which satisfies a > 0 we have aq > b, where
xℓ denotes a factor of length ℓ consisting only of symbols x. Figure 1 presents some
examples.

Eğecioğlu and Iršič deal in [5] with a graph whose vertex set corresponds to the words
from W1,n starting with zero. Two vertices are adjacent in this graph if and only if the
corresponding words differ at only one position.
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In this short paper, we extend the above definition of Wq,n for the case where q is a
positive rational number, provide generating functions and give a method to construct
linear recurrence relation for the sequence (|Wq,n|)n⩾0 with 0-or-1 coefficients.
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(a) W1,n enumerated by Fibonacci.
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(b) W2,n enumerated by Tribonacci.

Figure 1: Sets Wq,n for small values of n and q.

2 Set construction and generating function
For q ∈ Q+, the set Wq =

⋃
n∈N Wq,n is constructed as follows:

Wq =
∞⋃
k=0

{1k} ∪Wq · Sq, where Sq =
∞⋃
i=0

{
1+⌊ i

q⌋ zeros︷ ︸︸ ︷
0 . . . 001 . . . 11︸ ︷︷ ︸

i ones

} (1)

and Wq · Sq corresponds to a set of all possible concatenations of elements from Wq

and Sq (in this order). Table 1 shows shortest elements of Sq for different values of q.
A word 111000010000110010 ∈ W1,18 decomposes as 111 0 0 001 0 00011 001 0, but a
word 111000010000110010 ∈ W2,18 decomposes as 111 0 0 0 01 0 0 0011 0 01 0, and
111000010000110010 /∈ W1/2 because the factor 001 is not in S1/2 and the word cannot be
constructed.

S1/2 S2/3 S1 S2 S3/2

0 0 0 0 0

0001 001 001 01 01

0000011 000011 00011 0011 0011

0000000111 00000111 0000111 00111 000111

0000000001111 00000001111 000001111 0001111 0001111

0000000000011111 0000000011111 00000011111 00011111 000011111

· · · · · · · · · · · · · · ·

Table 1: Shortest elements from sets Sq.
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Let Sq(x) =
∑∞

n=0 snx
n and Wq(x) =

∑∞
n=0wnx

n be generating functions for Sq and
Wq, with respect to the word length, marked by x. Coefficients sn and wn are the numbers
of words of length n from sets Sq and Wq. Using the classical symbolic method to derive
formulas for generating functions (see Flajolet-Sedgewick book [7]), we see that

⋃∞
k=0{1k}

has the generating function 1
1−x

, and Eq. (1) gives Wq(x) =
1

1−x
+Wq(x)Sq(x), so

Wq(x) =
1(

1− Sq(x)
)
(1− x)

. (2)

In the following we consider a more refined (bivariate) version of these generating
functions with respect to the number of zeros and ones. We note, with a slight abuse of
notation,

Wq(y, z) =
∞∑
r=0

∞∑
i=0

wr,iz
ryi, (3)

where wr,i is the number of words in Wq having exactly r zeros and i ones. It is easy
to see that Wq(x) is retrieved from Wq(y, z) by replacing both y and z by x, that is
Wq(x) = Wq(x, x). The bivariate generating function Sq(y, z) is defined in a similar way.
In this setting,

⋃∞
k=0{1k} has the generating function 1

1−y
, and instead of Eq. (2) we have

Wq(y, z) =
1(

1− Sq(y, z)
)
(1− y)

. (4)

Now, we construct the set of suffixes Sq(y, z) and derive its generating function Sq(y, z).

Definition 2. Let q = c
d

be a positive rational number represented by the irreducible
fraction (e.g. 4 = 4

1
), a word factor 0d1c is called a spawning infix. The generating function

with respect to the number of zeros (marked by z) and the number of ones (marked by y)
for the spawning infix 0d1c is zdyc. (We intentionally write zd before yc. According to our
idea, this should reflect the structure of the factors: zeros appear before ones.)

Definition 3. A polynomial

Pq= c
d
(y, z) =

c−1∑
i=0

z1+⌊ i
q⌋yi

is called a model polynomial of a positive rational number q represented by the irreducible
fraction q = c

d
.

For instance, P 2
3
(y, z) = z + z2y, P 3

2
(y, z) = z + zy + z2y2, and P1/k(x) = z for any

k ∈ N+. Figure 2 presents a graphical interpretation of model polynomials.

Lemma 1. Let q ∈ Q+ be represented by the irreducible fraction c
d
. The generating

function Sq(y, z) =
∑∞

r=0

∑∞
i=0 sr,iz

ryi where sr,i is the number of words of the form 0r1i,
where r = 1 + ⌊i/q⌋ is

Sq= c
d
(y, z) =

Pq(y, z)

1− zdyc
.
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Figure 2: A graphical representation of model polynomial Pq= 3
4
= z + z2y + z3y2. For

j > 0, a term ziyj in a model polynomial means that one must make i arc-steps of the
angle 2qπ in order to cross the starting line j times.

Proof. Let us construct the set Sq in relation (1) iteratively. First add the word 0 and
all words of the form 01+⌊i/q⌋1i for i ∈ [1, c− 1]. These words correspond to the terms of
the model polynomial Pq(y, z). Other words of Sq are obtained by iteratively injecting
the spawning infix 0d1c just after the rightmost 0 in already generated words. Using the
classical symbolic method [7] we see that 1

1−zdyc
generates a sequence of infix additions.

By construction sr,i is either 0 or 1.

To illustrate Lemma 1 we take q = 3/2. In this case, the model polynomial is

P 3
2
(y, z) = z + zy + z2y2,

the corresponding words are
0, 01, 0011,

and the spawning infix is 00111. Adding the infix just after the rightmost 0 we obtain

000111, 0001111, 000011111.

And repeating this operation, we get

00000111111, 000001111111, 00000011111111, 0000000111111111, . . .

Finally, we obtain the set S 3
2
.
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Theorem 1. Let q ∈ Q+ be represented by the irreducible fraction q = c
d
. The generating

function Wq(y, z) =
∑∞

r=0

∑∞
i=0wr,iz

ryi where wr,i is number of words from Wq of length
r + i containing exactly r zeros and i ones is

Wq(y, z) =
1− zdyc

(1− y)
(
1− zdyc − Pq(y, z)

) .
Proof. It follows directly from Lemma 1 and Equation (4).

Evaluating Wq(x, x) we get the generating function Wq= c
d
(x) = 1−xc+d

(1−x)
(
1−xc+d−Pq(x,x)

)
where x marks the length and q is represented by the irreducible fraction q = c

d
.

The total number of 0s (in other words, the popularity of 0s) in all words from Wq=1,n

is enumerated by a shift of the sequence A6478 in Sloane’s On-line Encyclopedia of
Integer Sequences [15]. The corresponding generating function is obtained by evaluating
∂W1(x,xz)

∂z
|z=1. It is quite unexpected, but the sequence A6478 enumerates also the edges in

the Fibonacci hypercube considered by Rispoli and Cosares [16]. A Fibonacci hypercube is
a polytope determined by the convex hull of the Fibonacci cube which in turn is defined by
Hsu in [10] as the graph whose vertices correspond to binary words of size n avoiding two
consecutive 1s and where two vertices are connected if and only if the corresponding words
differ at only one position. Is it possible to give some kind of a nice bijective construction
between the edges of Fibonacci Hypercube and the 0s in words from Wq=1,n? As far as
we could check, no other sequences in OEIS [15] correspond to the popularity of 0s (or 1s)
for other values of q.

3 Linear recurrence with 0-1 coefficients
We shall prove the following result.

Theorem 2. Let a positive rational number q be represented by the irreducible fraction c
d
.

The number of n-length binary words from Wq,n, denoted by wn, can be expressed as

wn =
∑
j∈J

wn−j + wn−(c+d), (5)

where J is the set of powers from the model polynomial Pq= c
d
(x, x). For example, when

q = 3
2
, we have P 3

2
(x, x) = x+ x2 + x4, and J = {1, 2, 4}.

Initial conditions w0, w1, · · · , wc+d−1 are obtained by setting wn = 0 for n < 0, unrolling
Equation (5) from left to right, while adding an extra 1 for every wi for 0 ⩽ i < c+ d.

Proof. Consider the following map ψ (first defined in [1]) acting on binary words

ψ(1k) = 1k+c+d;

ψ(v1ℓ) = v0d1c1ℓ, if v ends with 0.

We first show that ψ induces a bijection from Wq,k to the subset of words from Wq,k+c+d

ending by at least c 1s. The map ψ inserts the spawning suffix 0d1c just after the rightmost

5
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0 in a word having at least one 0. This does not change the property characterizing
the words in Wq (see Definition 1). If there are no 0s in a word from Wq,k, this word is
extended by adding c+ d 1s at the end. And again it does not change the characterizing
property of Wq. Given the above analysis, it easy to see that ψ applied to any word in
Wq,n gives us a word in Wq,n+c+d and this application is bijective.

As follows from Equation (1), any word from Wq,n is either 1n or have a form ps,
where s = 01+⌊i/q⌋1i is a word in Sq for certain i ⩾ 0, such that n ⩾ 1 + ⌊i/q⌋ + i and
p ∈ Wq,n−(1+⌊i/q⌋+i). When n ⩾ c+ d there are c+ 1 cases:

(case 1) The words of Wq,n ending with 0 are obtained by adding 0 at the right end
of words from Wq,n−1. This corresponds to the first term, z, of the model polynomial
Pq= c

d
(y, z) =

∑c−1
i=0 z

1+⌊i/q⌋yi.
(case k, 1 < k < c) The words of Wq,n ending with k 1s are obtained by adding the

suffix 01+⌊k/q⌋1k at the right end of words from Wq,n−(1+⌊k/q⌋+k). This corresponds to the
term z1+⌊k/q⌋yk of the model polynomial Pq(y, z).

(case c+ 1) The words of Wq,n ending with at least c 1s are obtained from the words
of Wq,n−(c+d) by applying ψ.

Considering cardinalities of the sets, these c+ 1 cases give us the claimed recurrence
relation (5). To construct initial conditions Wq,0,Wq,1,Wq,2, . . .Wq,c+d−1, we use the same
process as in previously considered cases, assuming that Wq,m contains no words for every
m < 0, and adding an extra word 1k into every set Wq,k with 0 ⩽ k < c + d, so Wq,0

contains only the empty word 10.

Table 2 presents some sequences. Remark, that recurrence relations for sequences
(|Wq,n|)n⩾0 are equal to the recurrence relations for certain restricted integer compositions
(ordered partitions). For some values of q the sequence (|Wq,n|)n⩾0 corresponds exactly to
a shift of a sequence enumerating restricted compositions (see q = 1/5 in Table 2). For
other values of q the initial conditions differ from those of integer compositions. Consider,
for instance, the case q = 3/5. The recurrence relation is wn = wn−1+wn−3+wn−6+wn−8.
The same recurrence holds for the sequence enumerating the compositions of n ⩾ 2 into
1s, 3s, 6s and 8s, but the initial conditions are different. The sequence of compositions
starts with 1, 2, 3, 4, 7, 11, 17, 27, while the sequence (|W3/5,n|)n⩾0 begins with 1, 2, 3, 5,
8, 12, 19, 30.

4 Gray codes
A k-Gray code, named after Gray’s work [9], for a set A of words of length n is an
arrangement of all words of A in such a way that any two consecutive words differ at most
in k positions. As follows from a result of [1] (which applies to the rational case also), a
3-Gray code exists for every Wq,n with n ⩾ 0 and any positive rational q.

For some values of q and n no 1-Gray code can exist, for example when q = 2/3 we
have 12 words, 7 with odd number of 1s : 00001, 00100, 00010, 10000, 11001, 11100, 11111;
and 5 with even number of 1s 00000, 10010, 10001, 11000, 11110. It easy to check that
there is no 1-Gray in this case.

In general the question whether a 1-Gray code exists for a given q is a challenging
one. The Eğecioğlu-Iršič conjecture [5] is essentially about the existence of a 1-Gray
code for W1,n, n ⩾ 0. A paper [1] offers a proof for this conjecture by presenting a
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q Sequence Recurrence relation OEIS (with shifts)

1/5 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, ... wn = wn−1 + wn−6 Compositions (or-
dered partitions) of
n into 1s and 6s.
A5708

1/4 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, ... wn = wn−1 + wn−5 C. into 1s and 5s.
A3520

1/3 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, ... wn = wn−1 + wn−4 C. into 1s and 4s.
A3269

2/5 1, 2, 3, 4, 6, 9, 13, 18, 26, 38, 55, 79, ... wn = wn−1 + wn−4 + wn−7 C. into 1s, 4s and 7s.
Not in OEIS.

1/2 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, ... wn = wn−1 + wn−3 Narayana’s cows,
A930

3/5 1, 2, 3, 5, 8, 12, 19, 30, 46, 72, 113, 176, ... wn = wn−1 + wn−3 + wn−6 + wn−8 NEW
2/3 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, ... wn = wn−1 + wn−3 + wn−5 C. into 1s, 3s and 5s,

A60961
3/4 1, 2, 3, 5, 8, 13, 21, 33, 53, 85, 136, 218, ... wn = wn−1 + wn−3 + wn−5 + wn−7 C. into 1s, 3s, 5s and

7s, A117760
4/5 1, 2, 3, 5, 8, 12, 19, 30, 46, 72, 113, 176, ... wn = wn−1 + wn−3 + wn−5 + wn−7 + wn−9 NEW
1 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... wn = wn−1 + wn−2 Fibonacci numbers,

A45
5/4 1, 2, 4, 7, 13, 23, 42, 75, 136, 244, 441, 794, ... wn = wn−1 + wn−2 + wn−4 + wn−6 + wn−8 + wn−9 NEW
4/3 1, 2, 4, 7, 13, 23, 42, 75, 136, 245, 443, 799, ... wn = wn−1 + wn−2 + wn−4 + wn−6 + wn−7 NEW
3/2 1, 2, 4, 7, 13, 23, 42, 76, 138, 250, 453, 821, ... wn = wn−1 + wn−2 + wn−4 + wn−5 NEW
5/3 1, 2, 4, 7, 13, 24, 44, 81, 148, 272, 499, 916, ... wn = wn−1 + wn−2 + wn−4 + wn−5 + wn−7 + wn−8 NEW
2 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, ... wn = wn−1 + wn−2 + wn−3 Tribonacci numbers,

A73
5/2 1, 2, 4, 8, 15, 29, 56, 107, 206, 396, 761, 1463, ... wn = wn−1 + wn−2 + wn−3 + wn−5 + wn−6 + wn−7 NEW
3 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, ... wn = wn−1 + wn−2 + wn−3 + wn−4 Tetranacci numbers,

A78
4 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, ... wn = wn−1 + wn−2 + wn−3 + wn−4 + wn−5 Pentanacci numbers,

A1591
5 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, ... wn = wn−1 + wn−2 + wn−3 + wn−4 + wn−5 + wn−6 Hexanacci numbers,

A1592

· · · · · · · · · · · ·

Table 2: Cardinalities of Wq,n⩾0 for some values of q.

sophisticated recursive construction. Here is an example for the words of length 5 and
q = 1: 11111, 11110, 11100, 11000, 11001, 10001, 10000, 10010, 00010, 00011, 00001,
00000, 00100. As mentioned in [1], experimental investigations for small values, 0 ⩽ n ⩽ 5
and q ∈ {2, 3, 4, 5}, suggest the following conjecture.

Conjecture 1 (Baril, Kirgizov, Vajnovszki). Let q ∈ N+ and n ⩾ 0 be given. Then, a
1-Gray code exists for Wq,n.

5 Generalized golden ratio
The generalized golden ratio is defined as φk = limn→∞ an+1/an, where an+1 and an
are two adjacent k-bonacci numbers. The golden ratio is φ2 = (1 +

√
5)/2, and φ3 =

(1+
3
√

19 + 3
√
33+

3
√

19− 3
√
33)/3 is known as the Tribonacci constant. The Tetranacci

constant φ4 have quite a large expression in radicals. In general, φk is expressed as the
largest root of the polynomial xk − xk−1 − · · · − x− 1. See Wolfram’s paper [17] for full
details. In the same paper, Wolfram conjectured that there is no expression in radicals

7

https://oeis.org/A5708
https://oeis.org/A3520
https://oeis.org/A3269
https://oeis.org/A930
https://oeis.org/A60961
https://oeis.org/A117760
https://oeis.org/A45
https://oeis.org/A73
https://oeis.org/A78
https://oeis.org/A1591
https://oeis.org/A1592


for k ⩾ 5. By computing the Galois group, with the help of the computer algebra system
Magma [2], he confirmed the conjecture for 5 ⩽ k ⩽ 11. Martin [13] proved the case
of even or prime k. Furthermore, Cipu and Luca [3] demonstrated the impossibility
of the construction of φk by ruler and compass for k ⩾ 3. As far as we can tell, the
question whether there is an expression in radicals remains open for odd non-prime k > 11.
Dubeau [4] proved that φk approaches 2 when k → ∞.

By constructing and enumerating the set Wq,n of restricted binary words of length n,
parameterized by a positive rational value q, in this paper we provide a generalization
of multi-step Fibonacci numbers. For integer q we have φq−1 = limn→∞ |Wq,n+1|/|Wq,n|.
Non-integer q, in some way, allows us to see what happens with the generalized golden
ratio, when its parameter becomes non-integer. As the generating functions are rational in
our case, classical analytic combinatorics method can be used to find the limit. It equals
to 1/β, where β the smallest by modulus root of the denominator of the corresponding
generating function Wq= c

d
(x) = 1−xc+d

(1−x)
(
1−xc+d−Pq(x,x)

) (see Thm. 1). Figure 3 presents some

numerical estimations for the function q 7→ limn→∞ |Wq,n+1|/|Wq,n|, where q takes rational
values from [0, 2.02] with step 1/50.

Question 1. (related to Wolfram conjecture) For which rational values of q there is an
expression in radicals for ϕq−1 = limn→∞ |Wq,n+1|/|Wq,n|?

Remark, that the set Wq,n is well-defined even if we extend the domain of the parameter
q to all positive real numbers. We have two related conjectures in this realm:

Conjecture 2. Let r ∈ R+ be given. Then, limn→∞ |Wr,n+1|/|Wr,n| exists.

Conjecture 3. The function r 7→ limn→∞ |Wr,n+1|/|Wr,n| is increasing over the interval
[0,+∞) and discontinuous at every positive rational r.
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