ENUMERATION IN THE LATTICE OF ¢-DECREASING WORDS

JEAN-LUC BARIL, NATHANAEL HASSLER, SERGEY KIRGIZOV

ABSTRACT. We prove that the poset of g-decreasing words equipped with the component-
wise order forms a lattice. We enumerate the join-irreducible elements for arbitrary ¢ > 0,
and for any positive rational number ¢, we determine the number of coverings, intervals and
meet-irreducible elements. The latter present the same structure as words over an alphabet
of 2[q] + 1 letters avoiding [¢]? + 2[¢] — 1 consecutive patterns of length 2. Furthermore,
we analyze the asymptotic behavior of several of these quantities.

1. INTRODUCTION

Let g be a non-negative real number. A ¢-decreasing word of length n > 0 is a binary

word of length n satisfying the following constraint:
every mazimal factor of the form 0°1° satisfies either a =0 or q-a > b.

More precisely, whenever a block of zeros is followed by a block of ones, the length of the
ones block must be strictly less than ¢ times the length of the preceding zeros block (see
[T, 2, B, 5]). Therefore, such words can start with arbitrarily many 1’s, and end with arbitrar-
ily many 0’s. Let WY be the set of g-decreasing words of length n. For instance, we have W] =

{0000, 0001, 0010, 1000, 1001, 1100, 1110,1111}, W = {0000,0001,1000,1100,1110,1111}

and W7 = {000,001,010, 100,101,110, 111}. It directly follows that if ¢ < r, then W2 C W
for any n > 1. Notice that if we define WI" = y>q Wi, or equivalently W' is the set of
binary words of length n such that

every mazimal factor of the form 0°1° satisfies either a =0 or q-a > b,
then we have W9 = W9" for any n when g is irrational, and W¢ ¢ W?" when ¢ = ¢/d, with
c¢/d an irreducible fraction, and n sufficiently large (n > ¢+ d). For instance, we have

W = {0000, 0001, 0010, 0100, 1000, 1001, 1010, 1100, 0101, 0011, 1110, 1101, 1111},

which contains strictly Wj.
Any word w € W{ can be written

w = 1m0 1b 0% 1%,

with m, ¢ > 0, and g-a; > b; > 1 for 1 < i < k (with k possibly equal to zero). The maximal
factors of the form 091° with ¢-a > b > 1 will be called prime factors.

The notion of g-decreasing words has recently attracted significant attention in the lit-
erature. This family of words exhibits a striking combinatorial property whenever ¢ is a
positive integer. Indeed, they are in one-to-one correspondence with binary strings that
avoid the pattern 197! ie. binary strings without ¢ + 1 consecutive 1 (see [3]). So, this
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implies that ¢g-decreasing words of length n (when ¢ is a positive integer) are enumerated by
the (¢ + 1)-generalized Fibonacci numbers FZf; where F? is defined by

Fy :Fg—l—i_Fg—l—i_'—i_ng—qa
with initial conditions F/¢ = 0 for n < 0 and F{ = 1 (see [0 @, [10]). It is well known that
the generating function of these numbers is

1
Fq(QZ):Zngn_

l—x—a%2—- —z7
n>0

Recently, Barcucci, Bernini, Bilotta and Pinzani [I] extended this bijection to ¢g-decreasing
words for any positive rational number ¢, showing that YW is in one-to-one correspondence
with binary words avoiding some patterns.

These words have also been studied from a generative prospective. Baril et al. [3] provide
efficient algorithms for the generation of all g-decreasing words whenever ¢ is a positive
integer. In particular, they construct a 3-Gray code for general ¢, and notably a 1-Gray
code for the case ¢ = 1, thus resolving a conjecture posed in the context of interconnection
networks by [5]. More recently, Wong et al. [I3] present a two-stage algorithm for generating
cyclic 2-Gray codes for g-decreasing words.

More generally, for any ¢ > 0, the generating function W, (x) for the number of ¢-decreasing
words with respect to the length n is given by

1
(-2 (1- 2l

see [4, [8]. This expression can be simplified as follows when ¢ is rational, i.e. ¢ = ¢/d where
¢ and d are positive integers:

(1.1) Wy(x) =

)

1— $c+d

(1=2) (12t = oyt l))
Note that when ¢ is an integer, i.e. when we fix d = 1 and ¢ = ¢ in the previous formula,

we obtain W,(z) = W Using 1' and 1' Dovgal and Kirgizov [4] proved that for
all real ¢ > 0, [2"|W,(z) ~ C,-P(q)", for a positive constant C,, and a function ®(q)
n—

o
that interpolates the g-bonacci numbers. In particular, when ¢ = ¢/d is a rational number,

®(q)~" is the smallest root in modulus of the polynomial 2¢+¢ 4 37071 oM+ li] —1. See [M]
for additional properties of ®(q).

To conclude this set of definitions, we introduce the main order-theoretic concepts used
throughout this paper. These notions are standard and can be found, for instance, in [7, [T1].
A poset L is a set endowed with a partial order relation <. Given two elements P, € L, a
meet (or greatest lower bound) of P and @, denoted P AQ), is an element R such that R < P,
R < @, and for any S such that S < P and S < @, then we have S < R. Dually, a join (or
least upper bound) of P and @, denoted P V @, is an element R such that P < R, Q < R,
and for any S such that P < S and @) < S, then we have R < S. Notice that join and meet
elements do not necessarily exist in a poset. A lattice is a poset where any pair of elements
admits a meet and a join. An element P € L is join-irreducible (resp. meet-irreducible) if

P =RVS (resp. P=RAS)implies P = Ror P =S. An interval I in a poset L is a subset
2

(1.2) W, (x) =



of £ such that there exist P,Q € I, P < @, such that ] ={Re€ L | P < Rand R < Q}. An
element w is said to cover an element v if v < w and there is no v € £ such that v < u < w.
In this case, we write v < w and the relation between v and w is called a covering.

In this paper, we equip W? with the componentwise order. If v = vjvy...v, and w =
w Wy . .. w, are two g-decreasing words in W then

v<w<= v, <w; foralll <7 <n.

Let W¢ := (W2, <) be the poset defined by this order relation. See Figure [1] for an
illustration of the poset W3.

Theorem 1.1. For g > 0, the poset Wi s a lattice for any n > 1.

Proof. For any words v and w in W{, we consider the binary word a = a; ... a, where a; =1
if and only if v; = w; = 1. It is straightforward to see that a € W4, and then a is the
greatest lower bound of v and w, which implies that W¢ is a meet-semilattice. Since 1" is
the maximum element of W4, Proposition 3.3.1 in [I1] implies that W¢ is a lattice. O

11111

11000 10010 10001 00011

10000 00100 00010 00001

00000

FIGURE 1. The lattice Wi. Tt contains 20 coverings (edges), 7 meet-irreducible
elements, 5 join-irreducible elements and 56 intervals.

Outline of the paper. In Section[2], we collect preliminary results that will be used through-
out the paper. Many of these results are quite technical, due to the presence of floor and
ceiling functions in generating functions related to g-decreasing words. Section [3|is devoted

to enumerative results concerning classical lattice parameters, specifically join-irreducible
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elements, as well as covering relations. For any rational number ¢ > 0, we provide a closed-
form expression for the generating function counting the number of coverings in W4. When
q is irrational, we present a formula that enables efficient computation of the initial terms
of the series expansion (e.g., using MAPLE). We also prove that the asymptotic behavior
of the number of coverings is connected to the function ®(g) defined in the introduction
above. In Section [} we derive a closed-form expression for the generating function that
enumerates the number of intervals in W¢ for any rational number ¢ > 0. Finally, Section
presents the structure of meet-irreducible elements in W¢ for any positive rational number g.
This structure is the same as the one of words over an alphabet of 2[¢] + 1 letters avoiding
[q]?+2[q] — 1 consecutive patterns of length 2. Taking advantage of this classical structure,
we present a method to obtain the closed form of the generating function enumerating the
number of meet-irreducible elements in W{ for any rational number g > 0.

2. USEFUL RESULTS

In this section, we collect various results that will help us in the study of the generating
functions we obtain in Section [3] [4] and 5] We begin with two simple facts about floor and
ceiling functions.

Fact 2.1. Let a,b be integers with a > 0 and b > 0, then

g5

Proof. Tt follows from the following inequalities [%J <3< ‘%1 < L

[IS]

J+1 O

o~ o

The following fact characterizes the integers b such that EJ = L%l .
Fact 2.2. Let g =c/d and b > 1. Then

FJ {b+1J<:>dbmodc€{0 ,c—d—1}.
q q

Proof. Let db = sc+r, with s > 0 and 0 < r < ¢ be the euclidean division of db by c¢. Then
§:s+£, and bJrTl:s—l—%l. So, we have

s:LEJ:{6+1J®T+d<1@O§r<c—d.
q q C

O

The following technical lemma will help us to characterize the prime factors of meet-
irreducible elements in Theorem [5.2]

Lemma 2.3. Let ¢ = ¢/d > 0 be a rational number. For everyn > 2+ FJ there exists a

unique pair (a,b) of positive integers such that a +b=n and 1 + { J <a<l1l+ L(’“J

Proof. Let b = [qHW—l and a =n —b. Smcen>2+{J we have 1 < a,b <n—1. By

Fact. b= (H_dw —1= chjrdlj. Then we have

m b <1+db_1+d cn — 1 <1+d ecn—1  dn L1 d
q| ~ c cle+d ] ™ c c+d c+d c(e+d)




Since 1+ m is an integer, we actually have

- é < dn t1o d <14 dn | [dn+1
q| ~ |lc+d cle+d)| ~ c+d| | e+d |’
where we used Fact for the last equality. On the other hand,
cn —1 cn —1 dn+1 b
R b B I e B P R ]

For the second inequality,

{b+1J {dbﬂlJ {db+d+1w db+d+1 d+1 dd cn-‘ )
1+ —| =1+ = > = + = -1
C

q c c c c+d
>d—|—1 d c¢n d dn 1_cdn+c+d

c c c+d c:c+d+g— clc+d)

q
b+1 cdn+c+d cdn+c+d—1 dn 1 1
T i I BN >
+{ q J_[ c(c+d) -‘ —i{ c(c+d) J +L—|—d+c c(c—l—d)J_
On the other hand,

a=n—b=n-— a +1={(n— o +1= dn +1<1+ b+_1 )
c+d c+d c+d q

For the uniqueness, suppose that (a,b), (a’,b") are two such pairs with a < o/, and thus
b > b'. Then we would have

'+ 1 '+ 1
1+V’+ J§1+H§a§a’—1sv+ J

Since 1 + LH—IJ is an integer, and by Fact , we actually have

n dn
c+d|’

q q q
which is a contradiction. O

In the following lemma, we determine the generating function of the sequence (| %] ),en

where a, b and ¢ are some integers satisfying a,b > 0, and we show that it can be expressed
as a rational function.

Lemma 2.4. Let a,b be two positive integers, relatively prime, and let ¢ be an integer. Then
we have

X lan +c o az® + (1 — 2)Qupe()
I (e

with Qupe(r) = 32,2 [ #5 2"
Proof. Let n € N, and let n = bk + r be its euclidean division by b. Thus we have 0 < r < b.

A simple calculation provides
an +c ko ar +c¢
=a
b b ’
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and then
+oo b—1

g WJCJ = ZZ ak+ V”CD ki

r=

- :z:bk (aka + Qupel ))
—0 N .

~a 1‘_2 S k) + Qo) 3 ()

k=0
- axb + Qa,b,c(x)
S (l—2)(1—2ab)  1—ab’

O

Example 2.5. For instance, if a = 3, b = 5 and ¢ = 2, then we have Q352(x) = r + 2% +
223 + 224, and

§L3n+2J o3+ (1—a)(z+ 22+ 223+ 22%)  z(x'+ 22+ 1)
" = =

|5 (1 —2)(1 — 25) C (1—a2)(1—a%)’

The following lemma plays a key role in the computation of generating functions involving
a ceiling function in the exponent of x.

Lemma 2.6. Let g(x) = : 0 anZ", and let ¢ = 5 be a positive rational number. We define
the series g.jq as
+o0
(c+d)n
n=0
Then we have
1 c—1 c—1 . 4
Geyalr) = = pHg(pha ) LRI
¢ 7=0 k=0

2im/c

where p = e is a primitive root of unity.

Proof. We start with the following two simple facts. For n > 0, we have
li w1 ifn=0][
c P73 0 otherwise.
k=0
Furthermore, for j € [0,¢ — 1], we have
1 c—1 +o00 1 c—1 +o0
(2.1) DN ALIEOEDS (; > pk("‘”) 8" =Y nja
k=0 n=0 k=0 n=0

Let n > 0, and let n = em + j be its euclidean division by c. Then,

Crdn) 1 (eq dyma [LEDI]
1+{ J 1+(6+d) Jﬁ jJ

C C



1+ L(c+d)nJ .
Thus, the series 7% a,x <1 can be rewritten

o | (et R (ctd)j
c n c J
Z anxl Z Z o 1+(c+d)m+[ ]
n=0 m=0 j=0
It then follows from ([2.1)) that
+o00 ( +d c—1 +oo ( +d) —1 M ,M c—1
c +(c+d)ym+ | Letdd ‘ —kj o k. ctd
§ and § E Aem+;5T e § § pg(ptxe).
n=0 7=0 m=0 7=0 k=0

O

In the next proposition, we examine the special case where ¢ is a rational function. In
particular, we provide a more efficient method for computing g./4 than the double sum given
in Lemma . Moreover we derive the asymptotic behavior of the coefficients of g./q under
the assumption that g has a unique singularity of minimal modulus.

Proposition 2.7. Let g(z) = gg;
rational number, with ¢ and d relatively prime. Then the following two statements hold.

(1) gesq is rational, and g.sq(x) = N(x)/D(x), where
D(x) = [Tizp Qo) with p = *
N(#) = Yigae L5 where P(o) [T QUobe) = S asa®.
(2) Suppose further that [x"]g(z) ~ C-a™™ for some constant C' and o > 0. Then
n—oo

there ezists a nonzero polynomial T € C[X| with degree at most ¢+ d — 1 such that

[2"]gc/a(z) o (") - a~ e,

be a rational power series, and let c¢/d be a positive

2im

with r = ec+d.

Proof. (1) Let g(z) = P(‘T with P and @ relatively prime. Let p = e*® andfork = 0,...,c— 1,
let Ri(z) = Z;;é p"”xlﬂ - (thls is a polynomial in x) By Lemma ,

c—1

_ NS g P N()
9) =, 2 140) g prsarey = iy

where D(z) = [[i_, Q(p*z'+%/¢), and

c—1
1
_ R P k 1+d/c 1+d/c
. 1?:0 k(@) P( ) [Tor

J#k
We begin by analyzing D(z). To this end, suppose first that Q(z) = z — a. Then we have

D(z) = (x1+d/c — a)(pde/c —a)... (pC_Ide/C —a)

c—1
) pk> ) ( ) .
(I g




. (c=5)(d+c)
DI DY [T 7))+ s

0<k1 <...<kj<c—1¢{ky,....k;}

It follows from the Vieta’s formulas for the polynomial ¢ — 1 that the above expression sim-
plifies D(z) = (—1)**!(2“"® — ). Thus for a general polynomial Q(z) = A[[;_,(z — ax)™,
we have

S

(2.2) ( ) = )¢ H( )(c—i—l)mk( ct+d OéZ)m’“

k=1

In particular, D(z) is a polynomial. Now let us focus on N (z). Let S(z) = P(x) [[Z] Q(p*z).
Then we have

N@) = 137 Ru(a)s(hat ).

C
k=0

Therefore, by Lemma if S(z) =Y 1, apx®, then N(z) = Y 1", akx1+t(c+cd)kj, which is

also a polynomial.

(2) Now suppose that [z"]g(z) ~ C-a " for some constants C' and o > 0. Then « is
n—oo

the unique root of Q(z) of minimal modulus By (2.2), the smallest roots of D(z) are then

ot e, . petdl

of gc/q, because

o, with r = ecfa. We can check that at least a#i is a singularity

Indeed, for j # 0, we have Q(p’a) # 0 since « is the unique root of @ with modulus
|a|; moreover, P(a) # 0 because P and @) are relatively prime; and finally, Ry(z) =

d d
Z; [1)046+d( +L] =9 S 0, since a > 0. We deduce that there exist some constants
€Oy - -5 Cerd—1, With ¢y # 0 such that

cn

[l’n]gc/d(l') n:oo (CO F+eor"+ .+ Cc+d_1r(c+d_1)n>a7c+d .

Example 2.8. Let g(x) = ——. Then by Lemma ,

1(3:4—3:”2 x—x1/2)_x(1+ax)

92($):§ 1—ax3? 14 aa’/?

T — a2
Using routine singularity analysis (see e.g. [12]), we deduce that
[xn]QQ(l‘) : (CO + clj” + ngzn)a%/?’,

2im -1/3(1 1/3
where j =e3 and ¢, = ite (J”O‘

) for k = 0,1, 2. Furthermore,

0 if n =0 mod 3,
o+ "+ =< a3 if n=1mod 3,
a % if n =2 mod 3.
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3. JOIN-IRREDUCIBLE ELEMENTS AND COVERINGS

In this section, we provide enumerative results for classical parameters of a lattice, namely
the join-irreducible elements, as well as covering relations. The enumeration of meet-
irreducible elements is a bit more intricate, so we treat it in Section 5} We first give the
enumeration of join-irreducible elements for any ¢ > 0, and then we conclude by giving
closed form for the generating functions of the covering for positive rational numbers g,
and a method for computing arbitrarily many terms of the generating functions for positive
irrational numbers gq.

3.1. Join-irreducible elements.
Theorem 3.1. For ¢ > 0 and n > 1, there are exactly n join-irreducible elements in W.

Proof. In a finite lattice, an element is join-irreducible if and only if it covers exactly one
element. We therefore count the words in W¢ that cover exactly one element. Note that a
factor 0¢1°, with ga > b > 1 covers only one element if and only if b = 1 (otherwise it covers
0915710 and 04T11°~1). Now we investigate the elements covered by 1™. Given i > 0, there
is at most one word covered by 1™ with suffix 01°. So the words covered by 1™ are exactly

1o, (reattgony L ek kgak gk

where a; = 1 + BJ is the smallest integer such that ¢ - a; > i, and k = ’V(;]-F_ml-‘ — 1 is the

largest integer such that oy < m — k. Thus, a factor 1" covers only one element if and only

if [;r—mlw =1,ie ifand only if 1 < m <1+ EJ So, taking a word w € W?, and its

decomposition

w = 1701 ... 0% 10",
w is join-irreducible if and only if m =0, k=1, b =1 and qa; > 1,or 1 < m <1+ EJ
and k = 0. Thus, the generating function for the number of join-irreducible elements in W¢
is

Eqa>1 xa+1 T+ ZL'Z + ...+ l’l+|~%J x2+L%J xr — x2+L%J €T
11—z 11—z (1 —2)? 1—-2)2  (1—-2)%
This proves that for any rational g, there are n join-irreducible elements in W¢. 0

3.2. Coverings.

Proposition 3.2. Let v,w € W?. Writing w = 1m0%1% ... 0%1%0° with m,¢ > 0, and
q-a; >b; > 1 for 1 <i<k, we suppose that v = ujv; ...vxug, with |uy| = m, |ug| = ¢, and
lvs| = a; +b; for 1 <i < k. Then w covers v (v <w) if and only if ug = 0°, and one of the
following two statements holds:

(1) uy < 1™ and v; = 0%1% for 1 <i <k,

(2) uy = 1™ and there exists a unique i such that v; <0%1%  and v; = 0%1% for j # i.

Proof. The implication from right to left being easy to check, we focus on the converse.
Suppose that v < w, i.e. w covers v. In particular, u; < 1™, uy < 0° and v; < 0%1% for
1 <4 < k. Then we necessarily have 1y = 0°. Now assume that among u;,v1, ..., v, there
are at least two of them (say for instance and without loss of generality w; and v;) such that

w < 1™ and v; < 01%. Then we would have v < 1™, ... v;0¢ < w, contradicting v < w. If
9



we had chosen v; < 091 and vy < 0%21%2, then the inequalities v < 1™0% 1510, . .. v,0¢ < w
would have also led to a contradiction. So there is exactly one word among uy, vy, ..., v
such that u; < 1™ or v; < 0%1%. O

Let A,(z) be the generating function for the number of coverings of the form v < 1™. Let
B,(x) denote the generating function for the number of coverings of the form v < 0%1° with
qg-a>b>1. Let Dy(x) denote the generating function for the number of elements in W? of
the form 091° with ¢-a > b > 1.

Proposition 3.3. Let ¢ > 0 be a real number, and let Cy(x) denote the generating function
for the number of coverings in Wi. Then
Ay(z) i By(z) ‘
(1 —2)(1 = Dy(x)) (1 —2)*(1 = Dy(x))
Proof. Using Proposition , coverings of the form (1) are in one-to-one correspondence

with words v = uv1vs . .. v;,0° satisfying u; < 1™ and v; = 0%1% for 1 < i < k; thus they
contribute to

Cy(r) =

Ay(x)
(1 —2)(1 = Dy(x))
Coverings of the form (2) are in one-to-one correspondence with words v = 1"vjvy .. .0 0°
such that there is a unique 7 with v; < 0%1% and v; = 0% 1% for j # i; thus they contribute
to

By(z)
(1= 2)%(1 = Dy(x))*
Considering these two cases, the expected result follows. O

The next proposition establishes the explicit forms of A,(x), B,(x) and D,(z) for any
q > 0.

Proposition 3.4. For any real ¢ > 0, we have

“ g+1|7 e 11—z g+ 1 !

n=1 b=1

+oo

1
and Dy(x) = T ZbeJFLgJ,
b=1

Proof. The proof is divided into three parts, each corresponding to A,(x), B,(z) and D,(z)
respectively.

e As we saw in the proof of Theorem [3.1] for n > 1, the words v € W such that v < 1"
are exactly

17710, 1P mtomL, L, 1 en TRk R
where o; = 1 + BJ is the smallest integer such that ¢ - «; >4, and k = [q‘i—"l-‘ —1is
the largest integer such that oy < n — k. Indeed for each i € [0, k], there is exactly

one word covered by 1" with suffix 01°. So there are exactly { words covered by

an
q+1
1™ in W, hence the expression of A,(z).
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e Let a,b be positive integers such that ¢-a > b > 1. The words v € W/ such that
v < 0°1° are exactly

Oalbflo’ Oalbfalflooq 1, el Oalbfakfkoozk 1k’ Oa+1 1b71’

where o; = 1 + BJ is the smallest integer such that ¢ - a; > 7, and k£ = [qs:ll)w -1

is the largest integer such that ap < b — k — 1. So there are exactly
-1 1
2+{q(b W—l:{qwf w
q+1 qg+1
words covered by 0%1° in W¢. Then we have

400 400 +oo
BM;ZLH% =T g+1|" '

b=1

+00 400 +oo
1
D,(z) = Z Z 2+ — — Z$1+bﬂ§j'
b=1 ga>b b=1

O

In the case where ¢ = ¢/d is rational, Proposition and Proposition provide a closed
form for A,(z), B,(z) and Dy(z).

Proposition 3.5. For ¢ = ¢/d a rational, we have

cxttd 4 (1 — g) Soerd=t fe=L| o c 14| Dk
Ar) =1+ T ( )Xk %) D) = YT |
l—x (1 —z)(1 — xetd) (1 —2)(1 — xetd)
I B ( ) apx + alxlﬂ%J + ...+ amxHL(Hg)mJ
an x) =
a (1 —2)(1 — zctd)(1 — gletd)?) ’
where ag, . .., a, are the coefficients of the polynomial
L er+d-1
p(1 =2+t + (1—2) Y [—J 2" | (Lbzt. . A2 1+ . et eD),
p— c+d

Proof. Tt follows from Proposition [3.4] and Fact [2.1] that

+o00 400 400

cn n cn—1 n T cn—1|

wer=S [l =S (2] Ko
n=1 n=1 n=0

The desired expression follows from Lemma [2.4] Using Proposition 2.7, we directly deduce

D ket xHLMJ
Dolx) =3 . 2)(1 — zotd)’

Once again using Fact 2.1 we have

gb+1| [cb+d 14 co+d—1
g+1 | |c+d| c+d '

11




By Lemma [2.4] we have,

+o00 c+d ctd—1 | er4d—1 r
Z(H {%Dxb v et (1— ) o e

= +
£ c+d 1—=z (1 —x)(1 — z¢td)
p(1— ) + e 4 (1 —a) o750 [ oy

(1 —z)(1 — xetd)
Now it suffices to apply Proposition to the above expression to obtain a closed form of

B,(z). Observing that [i_y(1 — e e z)(1— ewxﬁd) = (1 —2°)(1 — 2¢+d) and
c—1
2irk 2ir(ctd)k (1 — xc)(l — Q;C(C"‘d))
(I—e e x)(l—e = ot =
g (1 —z)(1 — xetd)
=(14+z+...+ 21+ a4 gDy
the expression of B,(x) then follows from Proposition . U

Example 3.6. For instance, whenever ¢ € {1,2,1/2,1/3}, we obtain:
oS+ 23— 22+ 1)

(x = D)2+ D) (22 +2—1)2

=2+ 227 4 523 + 102" + 202° + 382° 4 7027 4 1272% + 22827 + O('0);

Cl (I’) =

r(r'? + 210+ 228 +22° — 2t — 2+ 222 —x — 1)
(x =125+ a3+ 1)(23 + a2+ 2—1)2
=7 + 42 + 92° + 222% + 502° + 1082° + 22927 + 4762° + 9762° + O(2'°);

CQ(QZ') =

Co () r(x?+ a2+ 27—+t — a2 1)
€Tr) =
1/2 (r— 1)@+ 2%+ 1)(2® +x — 1)?
= 2+ 227 + 32% + 62* + 112° + 182° + 3027 4 502° + 8127 + O(2'?);

Co() r(@® + 0+ B 42 — a2 -t 1)
€T =
1/3 (z — 1) (x* + 1) (a8 + D(at +z — 1)?
=2+ 207 + 323 + 42t + 72® + 122° + 1927 4 282 + 422° + O(210).

Example 3.7. When ¢ is irrational, we do not have closed forms for the generating functions
A,(x), By(x) and D,(x). However we can compute the first terms to deduce the first values
in the Taylor expansion of C,(z). For instance, for ¢ € {v/2,7/4,¢e}, we obtain

C5(z) = v+ 42® 4 92° + 222" + 462° + 1002° + 2072" + 4252° + 8562” + O(z'),
Crja(z) = x4 22° + 52° + 102" + 202° + 382° + 702" + 1272° + 2242° 4+ O(2'?),

Co(x) = x + 42 + 122° 4 282" + 672° + 15425 + 34327 + 7492° + 16152° + O(2'?).
Corollary 3.8. Let ¢ > 0 be a positive real number. Recall that ®(q)~' is the smallest root
in modulus of the equation D,(x) =1 ([4]). There exists a constant ¢, > 0 such that

["]C() o, Can e ®(q)".
12



Proof. It follows from routine asymptotic analysis. Indeed, from Proposition , A,(x) and
B,(z) clearly have a radius of convergence of at least 1. So their smallest singularities are
greater than ®(¢)~!, which is smaller than 1. So by Proposition , the smallest singularity
of Cy(z) is then ®(q)~'. Furthermore, this singularity has multiplicity 2, hence the factor n
in the asymptotic. O

4. INTERVALS

In this section, we focus on the enumeration of intervals in W¢ for positive rational numbers
q. An interval I = {u € W¢| v < u < w} is denoted [v,w], it will be called prime whenever
w is prime, i.e. w = 0°1° with ¢-a > b > 1.

Let P,(z) be the generating function for the number of prime intervals in W¢, and I,(z)
the one for the number of all intervals. The following proposition below establishes that the
computation of P,(z) suffices to deduce the enumeration of all intervals.

Proposition 4.1. For any real ¢ > 0, the generating function for the number of intervals is
given by
Wy(z)

(1 —2)(1 = Py(x))
Proof. Let [v,w] be an interval in W?, and let us consider the decomposition of w:

w = 1m0 15 . 0® 1%,

Iy(z) =

where 0%1% are prime factors. We take the decomposition of v that is chosen to be compatible
with that of w:

UV = U1V1 ... VkUg,

with |up| = m, |ug| = ¢, and for all i € [1,k], |v;| = a; + b;.

By the definition of the relation <, we have u; < 1™, uy < 0%, and for all i € [1,k],
v; < 0%1% 50 uy € WY, ug = 0%, and [v;,0%1%] is a prime interval for all i. Conversely,
given u € W9 and some prime intervals [v;, 041%], then [uvy ... vx0f 1™0% 1% .. 0% 1%%0¢] is
an interval. The generating function for the number of elements v € WY, is W,(z), the one

1

for the number of sequences 0° is 1, and the one for the number of sequences of prime

intervals is . The result then follows. [l

1
1—Py(x)
Since W, (z) is known for any ¢ > 0, we now focus on the computation of P,(z).

Theorem 4.2. Let ¢ = ¢/d be a positive rational number. Then we have

Leja(z)
Balo) =770
where Tojg(z) = 3% anxlﬂ(ctd)”, with T'(z) = x“%"‘iﬁ(@) =Y "% anan.

Proof. Let a,b be such that ¢-a > b > 1, and w = 01°. Then v € Wi, satisfies v < w if
and only if v = 09T or v = 0**1v for some k € [0,b0 — 1], and v € W , ,. Consequently,

400 b—1 400 b—1
YD (szwg_k_lw)w—z 5 (szwzl)w
b=1 a21+L%J k=0 b=1 a21+L%J k=0

13



oo b—1 +00 1+b+L |
:Z (1—|—Z|W2|>$b Z z? Z(l—l—ZWVq)
= k=0 a=1+| % | b=1

Since >, (1 +y |W,Z|) 2 = T'(z), the result directly follows from the definition of

Tesa(x) (see Lemma [2.6). O
Corollary 4.3. Let ¢ = c¢/d be a positive rational number, and define the polynomial
H, = 1- a0 = et lil,

(1) Let p=e*c and m = c(c+ d+2). Then

> ko akakﬂgJ
(1= aetd)? [T Ty (pha'+)
where )" Lo apt =z (1— 2t + (1 — 2)y(z)) (L+ 2 + ... + 212 T[] (k).

(2) Let r = ecti. There exists a nonzero polynomial T € C[X] with degree at most
c+d— 1 such that

Py(x) =

Y

2" Pya) ~ T(")- (q)7e.

n—0o0

Proof. Tt directly follows from Theorem [4.2] and Proposition 2.7} since

(1 — 2t + (1 — )1, (z))
(1 — )2y (x) ’

I(x) =

and [z"|['(x) ~ ¢, - ®(q)" for some constant ¢, > 0. O

n—oo

Example 4.4. When ¢ = 1, we have Py(z) = (x71)2(xx+(:;)(xi)+x271)7 and

(1—2)(1+2)*(z" +2° —1)
(26— 222 —x +1)(22+2 — 1)
= 14 32 + 627 4 132 + 272" + 562° + 1152° 4 23427 + 4742® + 9552° 4+ O(2'?).

]1(1’) =

Furthermore, we have
1(2) (1 —2)(2® 4+ 25+ 32% — 1)(2? + 2 + 1)?
€Tr) =
2 (2 — 274226 — 423 — 222 —x+ D) (22 + 22+ 2 — 1)
=1+ 3z + 927 4+ 222% + 572* + 1452° + 36325 + 90927 + 22612° + 56082 + O(z'),

T ( ) _ (1—2)(@*+2° + 22+ 2+ 1)* (2% 4+ 227 + 32" + 2210 + 27 — 1)
2/3 (.’L’:m*.’ljz‘;+.’lf2571’23727}21+7J2072(l?18731‘1671'1574‘1“ 31.11 l“) 318 21( 721’ 72.’1)37.’IJ+1)<I5+I:{+1‘71)

=1+ 3z + 627 + 132% + 272* + 512° 4+ 1002° + 19627 + 3762° + 7232° + O(2'°),

I ( ) — (1= 2)(2® + 422 + 92" + 102" + 42° — 1) (a* + 2% + 2> + v + 1)?
3/2 (% + 24 + 22 + 2 — 1)(230 — 226 + 3225 — 22 — 322! 4 5320 — 19 — 4317 — 516 4 315 — 5514 — 6212 — 511 — 6210 — 829 — 57 — 326 — 5ad —dat — 222 —x + 1)

=14 32 + 927 4+ 222° + 572* + 1362° + 3362° + 81127 + 19662° + 47212° + O(z').
14




5. MEET-IRREDUCIBLE ELEMENTS IN W? FOR RATIONAL NUMBERS ¢ > 0

In this section we start by giving a closed form for the generating function of meet-
irreducible elements in W for rational numbers ¢ in |0, 1], which is the simplest case among
positive rational numbers. Then we give a general method to compute the generating func-
tion for rational numbers ¢ greater than 1.

5.1. Meet-irreducible elements in W¢ for a rational number 0 < ¢ < 1. The following
easy fact enables us to consider only meet-irreducible elements starting with 0.

Fact 5.1. Let m,n > 1 be two integers. If w € W1 then w is meet-irreducible if and only

if 1w € WL is meet-irreducible.

Theorem 5.2. Let ¢ = ¢/d be a rational number with 0 < ¢ < 1. The generating function
M(x) for the number of meet-irreducible elements in W is

p?rldel(p — DA — (z — 1) A% + 22
(x — 1) ((1 — Ax?tld/e] 4 Ag3tld/e] + (x — 1)(z + A — A2))’

e 4

with A = 2=t "=

1—gectd

M(z) =

Proof. Considering Fact we focus on meet-irreducible elements starting with 0.
Furthermore, let us consider the meet-irreducible elements ending with 1. These elements
can be written as concatenations of factors of the form 0%1°:

w=0"1% Q%10

with ¢ - a; > b; > 1 (which is equivalent to a; > 1+ L%J ).

Note that each factor of such a meet-irreducible element satisfies a; < 1 + {@J

Otherwise it would mean that 0°7'1°*! € W, and so w would be smaller than both

1oatbe o 0ei1b Q%1% and 0@ 1% .. Q% 11bFl %1% which are not comparable, con-
tradicting the meet-irreducibility.
Thus, each factor in w of the form 01° satisfies

(5.1) H{%JSGSH{MJ

c
and conversely, if (a, b) satisfy (5.1)), then 091 is a prime factor of a meet-irreducible element.
We now classify the factors satisfying (5.1]) into three sets A, B, C (not necessarily disjoint):

e A consists of the factors 0%1° such that

0°711" ¢ Wi,y and 0°1"7" € WE

e B consists of the factors 0%1° such that
“14b
071" € Wi, o,
e C consists of the factors 0%1° such that

a1b+1 q
0%1 € Wa-l—b-l—l'
15



For 0 < ¢ < 1, we have C C B (see also below), and ANB = (). The crucial condition on
the meet-irreducible elements is that they cannot have a factor from C consecutively followed
by a factor from B (what we call a pattern CB). For instance, assume w = 0%1°10%1° with
041% € ¢ and 0%21%2 € B. Then w is smaller than both 1917010212 and Q®151+1Qu—11b1
which are incomparable, contradicting the meet-irreducibility. Similar examples can be built
for words w with any number of factors. Conversely, one can check that any word which is
a product of factors 0%1° satisfying , and avoiding the consecutive pattern CB, is meet-
irreducible. Let M;(z) be the generating function of such words, i.e. meet-irreducible words
starting with 0 and ending with 1. Counting these words is equivalent to count non-empty
sequences of factors from the disjoint sets A,B\C, C avoiding consecutive factors uv, where
u € C, and v € (B\C) or v € C. It means that a factor from C is either at the end of the word
or followed by a factor from A. Then we have

B A+B+CA
1-A—(B-C)-cCcA’
where A, B, C' are the generating functions of the factors in A, B, C, respectively.

Now let us study meet-irreducible elements starting with 0 and ending with 0. They have
the following form:

Ml(l’)

w =041 . 0%1%0°",

with 1 + L%J <aq <1+ LMJ, w avoids the consecutive pattern CB, and 1 < / <

C

1+ L%’J Indeed, if £ > 1+ L%J, we would have w smaller than both 1701 . Q% 1%(¢
and 0%1% .. 0%1%0f11, which are not comparable. Moreover, 0%1% ¢ C, otherwise w
would be smaller than both 1%%%1 0% 1%(0¢ and 0%1% ... 0%1%+10 ! which are not
comparable. Conversely, such words w are indeed meet-irreducible. Since the generating
function for words counted by M;(x) and not ending with C is %,
that the generating function My(x) for meet-irreducible elements starting with 0 and ending
with 0 is

we deduce

A+(B-C)+CA
1-A—(B-C)—CA

Using Fact , we deduce that the generating function M (x) for all meet-irreducible elements
1s

d

M0($)2I+...+£E1+LZJ+ (x+...+m1+L%J).

11—z

M(z) =

To complete the proof it remains to compute the generating functions A, B and C. Let us
first characterize the factors belonging to respectively A, B and C. By checking the inequality
defining W9, we have

c

b+ 1
(5.2) Wﬁ€B®a22+L@Jﬁmdmﬁ€C®a:1+{ﬂ;ilf
&

C C

Since for every b > 1, 1+ Lde <1+ V(b—H)J, we have

db
(5.3) mﬁeA@a:1+{;J
16



By Lemma [2.3] for each n > 2 + L%J, there exists a unique factor 0%1° with length n such
that 1 + Lde <a<l1l+ { (bH)J So the generating function of all factors satisfying |.D

2+u.

Slnce A and B are dlSJOlnt and A U B contains all factors 021° satisfying (5 1.'

. and , we have

A+ B =
A= Zx1+b+ 1) and ¢ = Z N N 2rLE]
b=1 b=1 &
e ot [ €]
Using Proposition 2.7, we deduce A = ==L"————_ The desired expression of M (x) follows

Rkl
1—x

Remark 5.3. If w is meet-irreducible and w < v with v # 1", then v is meet-irreducible,
which means that the set of meet-irreducible elements, with 1", forms an upper ideal.

A_ 2] My(z) and M;(x), and simplifying. [

after plugging B =

5.2. Meet-irreducible elements in W{ for a rational number ¢ > 1. The enumeration
of meet-irreducible elements for ¢ > 1 proceeds similarly to the case 0 < ¢ < 1 discussed in
Theorem although it is slightly more involved. As seen in Theorem [5.2], the structure of
meet-irreducible elements for 0 < ¢ < 1 can be described in terms of words over a three-letter
alphabet avoiding a consecutive pattern of length 2. As we will see in this section, for ¢ > 1,
the structure of meet-irreducible elements corresponds to that of words over an alphabet of
2[q] + 1 letters avoiding [¢]? 4+ 2[¢q] — 1 consecutive patterns of length 2.

The general pattern avoided. Fact still holds, and we start by focusing on words
starting with 0 and ending with 1. Still as in the proof of Theorem [5.2], such meet-irreducible

words are products of factors 021°, with 1 + HJ <a<l1l+ L J Among these factors, we
distinguish the same 3 sets:

e A consists of the factors 091° ¢ C,
e B consists of the factors 0%1° such that

11b
01" e W! b1

e C consists of the factors 0%1° such that
01" € Wa+b+1

Note that we added the condition @ > 2 in B, which was always guaranteed for ¢ < 1, but no
longer for ¢ > 1. Furthermore, since ¢ > 1, we have B C C, in contrast to the case 0 < ¢ <1
(see below). As in the proof of Theorem [5.2] the crucial condition on meet-irreducible
elements is that they cannot have a factor from C consecutively followed by a factor from B.

The additional patterns avoided. In the case ¢ > 1, the avoidance of the pattern CB
is no longer sufficient to characterize meet-irreducible elements starting with 0 and ending
with 1. Actually, the factors having only one 0, namely 01,011, ...,01[911 play a special
role (there are no such factors for ¢ < 1).

From the definitions of A,B and C, we see that 01,...,01/71=2 € ¢, and 01/91-! € A.
These factors play a special role since 01° cannot follow a factor 01° such that 0216+i+!
is g-decreasing, which would create an extra upper cover. So let us define new sets D; for
1<i<[q] -1

and a > 2,

17



e D; consists of the factors 0¢1° such that

aqb+it1 q
0“1 S Wa+b+i+1'

Then the patterns D;01° (i.e. factors in D; followed by 01?) are also forbidden in a meet-
irreducible element.

Forming the letters. Now we have described all the patterns avoided by a meet-
irreducible element. However, there is one more step before converting fully our problem
into a pattern avoiding problem on words. Indeed, the sets we consider, A, B, C, the D;’s and
the 01”’s are not disjoint. So we want to split them into disjoint sets in order to express
properly the patterns avoided. One can check the following inclusions:

Drg1-1 €EBC D12 € D3 € ... €Dy €Dy CC.

Moreover, 011711 € A, 01191=2 € ¢\D;, and 01/91-27* € D;\D;;; for 1 < i < [¢] — 3. We then
define the following 2[q] 4 1 disjoint sets that will correspond to our letters:

a = A\{o1ld1-1}, b = {01fe1-1},
¢ = C\(D; U{011172}), d = B\Dfg)-1, e = Djg1,
£, = {01} for 1 <1< [q] -2,

gi = D;\(D;11 U{011917271})  for 1 < < [g] —3, and gy-2 = Dg-2\B.

Letalsoa,b,c,d, e fi,... . £ 2,8,..., 8, denote respectively the generating functions
of the corresponding sets.

The matrix of forbidden patterns. We now have 2[q] + 1 letters, a, b, c, d, e,
f1,..., g2, 81,---,8[q—2- The avoidance of CB, and D;01" for 1 < ¢ < [¢] — 1 then
translates in the following [¢]? + 2[¢q] — 1 forbidden patterns in terms of letters:

cd, ce,dd, de, eb, ed, ee,
dfi, efi, fzd, fie, gzd7 g€, ngu gifi—h . 7gif1 for 1 S 7 S I_q-l — 2,
and fiffq-\—Q—iyfiffq-\—S—zﬁ c 7f’if1 for 1 S 1 S [q—‘ - 3.
For ¢ € {a,b,c,d,e,f1,...,f[q1-2,81,---,8[q—2}, let M, denote the generating function
of words on these 2[q] + 1 letters, avoiding these [¢]? + 2[q] — 1 patterns, and ending with

the letter £. The patterns then induce structure on the M,’s, for instance the letter a can be
preceded by any letter, so

Ma:a+(MajLJ\/[bjLMc+Md+Me+Mf1+...+Mfm72+Mgl +...+Mgrq]72)-a.
The letter d can be preceded only by a or b, so
Md:d+(Ma+Mb)d

By doing this for each letter, we obtain a system on the M,’s. By solving it we obtain an
expression of each M, in terms of a, b, ... ,8[q]—2: that we compute in the next paragraph.
The generating function of meet-irreducible elements starting with 0 and ending with 1 is
then

My = My + My + Mc+ Mg+ Mo+ Mg, + ...+ Mz, + Mg, +...+ M,

8lq1—-2"

A meet-irreducible elements starts with 0 and ends with 0 if and only if it is O or it has the

form ¢y ...0;0 with k > 1, ¢, .../ avoids the above patterns, and ¢, C A, i.e. {; € {a,b}.
18



The generating function of meet-irreducible elements starting with 0 and ending with 0 is
then
My = (1+ M, + My)x.

By Fact [5.1] the generating function for all meet-irreducible elements is
Moy + M,

1—x

Computing the generating functions. To conclude, we compute the generating func-
tions A, B, C, D; of the sets A, B, C,D; in the next theorem.

M =

Theorem 5.4. Let ¢ = ¢/d be a positive rational number, with ¢ and d relatively prime.
For1 < i <d, let a; € {1,...,c} be such that a; = d"'(c —d — 1+ i) mod ¢, and for
0<m<c—d—1,letb, €{1,...,c} be such that b,, = d~'m — 1 mod c. Then

B 2?21 ml—l—aﬁ-L%J B Z?:l x2+ai+L%J B Z:i—; xi-‘rLéJ
A(SL’) - 1 — potd ) B(':C) - 1 — potd ) C(LE) - Wu
c—1—di 1+bm+L%T+1J
and Di(m)zzmolichrd for1<i<|[q] -1

Proof. By checking the inequality defining WW?, we have
b b+1

(5.4) Oa1b€B<:>a22—|—\‘—J,andO“lbeC@azl_F\‘LJ_
q q

Furthermore, when ¢ > 1, we have either V%J = EJ or LnglJ =1+ L J, and B C C. To

b+1 |.

characterize the factors belonging to A, we need to be careful when bJ =%

b b+1 b
5.5 i enea=1 |2 md |22 1 |2,
q q q

Indeed, if a = 1+ EJ =1+ b“J then 021° belongs to C, and not to A. Let us first compute
C: by (5.4) and Proposition

+o0 . b+ + ) L c+1xz+L J
_ + — + z 2
O)=) @ Zw ==
b=1
By Lemma | the generating function for all factors 01° such that 1+ HJ <a<l1l+ V’leJ
is f‘—2 Since B C C because ¢ > 1, we have by definition A(z) = _235 — C(z) (below, as a

bonus and a warm up for the D,’s, we compute a closed form of A in another way, using a
little bit of arithmetic). From 1) and Fact [2.2] we deduce that

“+00 “+o00
Alz) = Z x1+b+L§J _ Z x1+b+L§J.
Lbilj’jh 2] db med e>ed
q q

Since ¢ and d are relatively prime, d is invertible modulo ¢, so A can be rewritten

z) = Z e ||

bel
19



where I={b>1|bmodce{d 'k |k=c—dc—d+1,...,c—1}}.
For 1 <i<d, let a; € {1,...,c} be such that a; = d '(c —d —1+4) mod c¢. Then

PR A SIS S
2=
1—ac
bel

so by Proposition [2.7],
Z?:l ety

A(Q?) - 1 — gpetd

_Q

1+ EJ }, we actually have

Finally, using 1} and LHTlJ € QJ ,

b+1 b b
01’ € B & {—J :1+{—J anda:2+{—J,
q q q

+

so that
S Wty

B(z) = Z e I Az) = D ®

1 — petd

2 =)

Now it remains to compute the D;’s. By checking the definition of W7, we have

b+i1+1
0a1beni@az1+LiJ.
q
Sincel—i—L%J Sagl—l—VTTlJ,we actually have
b+i+1 b+1 b+1
OaleDM:){—{_ZjLJ:{jLJanda:l—i—LiJ.
q q q

As a direct generalization of Fact 2.2 we have

bti+1 b+ 1
{ +;+ J:{ Z J@db:m—dmodc, form e {0,1,...,c—1— di}

Sb=d'm—1mode, forme{0,1,...,c—1—di}.

We deduce that
Dl(.l?) _ Zx1+b+L%J’
bEJi
where J;={b>1|bmodce{d'm—1|m=0,1,...,c—1—di}}.
For0 <m <c—d—1,let b, € {1,...,c} be such that b,, = d~'m — 1 mod c. Then for

Z b ill'bo 4+ ...+ a:bc—l—d"

r = .
1—axc

beJ;

Using Proposition 2.7, we finally have
c—1=di _1+bp+ | bt |

Ddum=0 & ‘
Dl(w) - - 1 — gpetd

20



Example 5.5. Let us describe fully the case ¢ = 5/2. Here [¢] = 3, so there are 7 letters
and 14 avoided patterns. From the previous computations, we have

3 6 4 7 2 4 5 7 8
A(a;):x —|—x’ (x):er:c, (w):x +axt+ax° +x —|—x’
1—a 1—27 1—a7

x4+x7+x8 x’
D1<I’):_—x7, DQ(x):l—JZ?

The corresponding generating functions for the letters are then
a=A-23 b=2) c¢c=C-D,—2% d=B-D,,
e=D, f=21* g=D —B.

The avoided patterns are cd, ce, dd, de, eb, ed, ee, df, ef, fd, fe, gd, ge, gf, which give
the following system:

(M, = a+ (My+ My, + M.+ Mg+ M. + M: + M) -a
My = b+ (My+ My, + M.+ My+ M: + M,)-b

M, = ¢+ (My+ My+ M, + Mg+ My + Mz + M) - C
My= d+ (M, + M,)-d

M, = e+ (My+ M) -e

M:= £+ (M,+ M, + M.+ M) -

( Mg = g+ (My+ My+ Mc+ Mg+ Mo+ Mg + M) - 8.

Solving it we obtain
M, = M, + My, + M + Mg + M. + M: + M,
"Dy (B—D))2®+ Dy (B—C+1)a®+ (AB+ Dy)2> — AB — A—C
T Dy (B—D\)a—Dy(B—CH+ 1P+ (1—A)B-D) a2+ (A—1)B+A+C—1
2@+ )@ -t -2+ - (M 2 228 - 220"+ -t P+ 4+ 1)
20— 18 91T 4 15 g 912 10 4 909 — g8 35T — g6 — g5 g3 g2 4 1
My = (14+ M, + M)z

(B=Dy)2*-~B+C—1)x
Dy(B—D1)a5—Dy(B—C+1)a3+((1-—A)B—Dy)a?+(A—-1)B+A+C—1
(2" —1) (2% — a8 — 2" —2° — 22+ 1)
220 — 18 9007 1 p15 4 404 4 912 4 400 4 909 _ 48 35T _ 46 _ g5 _ 43 _ 42 1]
Finally, we deduce
My + M,
1—=

B 220 — 2217 — 2216 4 M 2213 4 2212 4 4x® 428 — 207 4 ab — 2 — 2t —2? -2
C(z—1) (220 — 218 — 2217 4 15 4 14 4 2912 4 210 1229 — 28 327 — 26 — g5 — 23 — 22 4 1)

=2+ 22 4+ 32° + 62" + 92° + 132° + 232" + 342° + 5227 + O (') .

M =
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