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Abstract. We prove that the poset of q-decreasing words equipped with the component-
wise order forms a lattice. We enumerate the join-irreducible elements for arbitrary q > 0,
and for any positive rational number q, we determine the number of coverings, intervals and
meet-irreducible elements. The latter present the same structure as words over an alphabet
of 2⌈q⌉ + 1 letters avoiding ⌈q⌉2 + 2⌈q⌉ − 1 consecutive patterns of length 2. Furthermore,
we analyze the asymptotic behavior of several of these quantities.

1. Introduction

Let q be a non-negative real number. A q-decreasing word of length n ≥ 0 is a binary
word of length n satisfying the following constraint:

every maximal factor of the form 0a1b satisfies either a = 0 or q · a > b.
More precisely, whenever a block of zeros is followed by a block of ones, the length of the

ones block must be strictly less than q times the length of the preceding zeros block (see
[1, 2, 3, 5]). Therefore, such words can start with arbitrarily many 1’s, and end with arbitrar-
ily many 0’s. LetWq

n be the set of q-decreasing words of length n. For instance, we haveW1
4 =

{0000, 0001, 0010, 1000, 1001, 1100, 1110, 1111}, W
1
2
4 = {0000, 0001, 1000, 1100, 1110, 1111}

and W
π
2
3 = {000, 001, 010, 100, 101, 110, 111}. It directly follows that if q < r, then Wq

n ⊆ Wr
n

for any n ≥ 1. Notice that if we define Wq+

n =
⋂

r>q Wr
n, or equivalently Wq+

n is the set of
binary words of length n such that

every maximal factor of the form 0a1b satisfies either a = 0 or q · a ≥ b,
then we have Wq

n = Wq+

n for any n when q is irrational, and Wq
n ⊊Wq+

n when q = c/d, with
c/d an irreducible fraction, and n sufficiently large (n ≥ c+ d). For instance, we have

W1+

4 = {0000, 0001, 0010, 0100, 1000, 1001, 1010, 1100, 0101, 0011, 1110, 1101, 1111},

which contains strictly W1
4 .

Any word w ∈ Wq
n can be written

w = 1m0a11b1 . . . 0ak1bk0ℓ,

with m, ℓ ≥ 0, and q ·ai > bi ≥ 1 for 1 ≤ i ≤ k (with k possibly equal to zero). The maximal
factors of the form 0a1b with q · a > b ≥ 1 will be called prime factors.
The notion of q-decreasing words has recently attracted significant attention in the lit-

erature. This family of words exhibits a striking combinatorial property whenever q is a
positive integer. Indeed, they are in one-to-one correspondence with binary strings that
avoid the pattern 1q+1, i.e. binary strings without q + 1 consecutive 1 (see [3]). So, this
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implies that q-decreasing words of length n (when q is a positive integer) are enumerated by
the (q + 1)-generalized Fibonacci numbers F q+1

n+1 where F q
n is defined by

F q
n = F q

n−1 + F q
n−1 + ·+ F q

n−q,

with initial conditions F q
n = 0 for n < 0 and F q

0 = 1 (see [6, 9, 10]). It is well known that
the generating function of these numbers is

Fq(x) =
∑
n≥0

F q
nx

n =
1

1− x− x2 − · · · − xq
.

Recently, Barcucci, Bernini, Bilotta and Pinzani [1] extended this bijection to q-decreasing
words for any positive rational number q, showing that Wq is in one-to-one correspondence
with binary words avoiding some patterns.

These words have also been studied from a generative prospective. Baril et al. [3] provide
efficient algorithms for the generation of all q-decreasing words whenever q is a positive
integer. In particular, they construct a 3-Gray code for general q, and notably a 1-Gray
code for the case q = 1, thus resolving a conjecture posed in the context of interconnection
networks by [5]. More recently, Wong et al. [13] present a two-stage algorithm for generating
cyclic 2-Gray codes for q-decreasing words.
More generally, for any q > 0, the generating functionWq(x) for the number of q-decreasing

words with respect to the length n is given by

(1.1) Wq(x) =
1

(1− x)
(
1−

∑+∞
i=0 x

1+i+⌊ i
q⌋
) ,

see [4, 8]. This expression can be simplified as follows when q is rational, i.e. q = c/d where
c and d are positive integers:

(1.2) Wq(x) =
1− xc+d

(1− x)
(
1− xc+d −

∑c−1
i=0 x

1+i+⌊ i
q⌋
) .

Note that when q is an integer, i.e. when we fix d = 1 and c = q in the previous formula,

we obtain Wq(x) =
Fq+1(x)−1

x
. Using (1.1) and (1.2), Dovgal and Kirgizov [4] proved that for

all real q > 0, [xn]Wq(x) ∼
n→∞

Cq · Φ(q)n, for a positive constant Cq, and a function Φ(q)

that interpolates the q-bonacci numbers. In particular, when q = c/d is a rational number,

Φ(q)−1 is the smallest root in modulus of the polynomial xc+d +
∑c−1

i=0 x
1+i+⌊ i

q⌋ − 1. See [4]
for additional properties of Φ(q).

To conclude this set of definitions, we introduce the main order-theoretic concepts used
throughout this paper. These notions are standard and can be found, for instance, in [7, 11].
A poset L is a set endowed with a partial order relation ≤. Given two elements P,Q ∈ L, a
meet (or greatest lower bound) of P and Q, denoted P ∧Q, is an element R such that R ≤ P ,
R ≤ Q, and for any S such that S ≤ P and S ≤ Q, then we have S ≤ R. Dually, a join (or
least upper bound) of P and Q, denoted P ∨ Q, is an element R such that P ≤ R, Q ≤ R,
and for any S such that P ≤ S and Q ≤ S, then we have R ≤ S. Notice that join and meet
elements do not necessarily exist in a poset. A lattice is a poset where any pair of elements
admits a meet and a join. An element P ∈ L is join-irreducible (resp. meet-irreducible) if
P = R∨S (resp. P = R∧S) implies P = R or P = S. An interval I in a poset L is a subset
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of L such that there exist P,Q ∈ I, P ≤ Q, such that I = {R ∈ L | P ≤ R and R ≤ Q}. An
element w is said to cover an element v if v < w and there is no u ∈ L such that v < u < w.
In this case, we write v ⋖ w and the relation between v and w is called a covering.
In this paper, we equip Wq

n with the componentwise order. If v = v1v2 . . . vn and w =
w1w2 . . . wn are two q-decreasing words in Wq

n then

v ≤ w ⇐⇒ vi ≤ wi for all 1 ≤ i ≤ n.

Let Wq
n := (Wq

n,≤) be the poset defined by this order relation. See Figure 1 for an
illustration of the poset W1

5.

Theorem 1.1. For q ≥ 0, the poset Wq
n is a lattice for any n ≥ 1.

Proof. For any words v and w in Wq
n, we consider the binary word a = a1 . . . an where ai = 1

if and only if vi = wi = 1. It is straightforward to see that a ∈ Wq
n, and then a is the

greatest lower bound of v and w, which implies that Wq
n is a meet-semilattice. Since 1n is

the maximum element of Wq
n, Proposition 3.3.1 in [11] implies that Wq

n is a lattice. □

11111

11110

1100111100

00011100011001011000

000010001010000 00100

00000

Figure 1. The latticeW1
5. It contains 20 coverings (edges), 7 meet-irreducible

elements, 5 join-irreducible elements and 56 intervals.

Outline of the paper. In Section 2, we collect preliminary results that will be used through-
out the paper. Many of these results are quite technical, due to the presence of floor and
ceiling functions in generating functions related to q-decreasing words. Section 3 is devoted
to enumerative results concerning classical lattice parameters, specifically join-irreducible
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elements, as well as covering relations. For any rational number q > 0, we provide a closed-
form expression for the generating function counting the number of coverings in Wq

n. When
q is irrational, we present a formula that enables efficient computation of the initial terms
of the series expansion (e.g., using Maple). We also prove that the asymptotic behavior
of the number of coverings is connected to the function Φ(q) defined in the introduction
above. In Section 4, we derive a closed-form expression for the generating function that
enumerates the number of intervals in Wq

n for any rational number q > 0. Finally, Section 5
presents the structure of meet-irreducible elements inWq

n for any positive rational number q.
This structure is the same as the one of words over an alphabet of 2⌈q⌉+ 1 letters avoiding
⌈q⌉2+2⌈q⌉−1 consecutive patterns of length 2. Taking advantage of this classical structure,
we present a method to obtain the closed form of the generating function enumerating the
number of meet-irreducible elements in Wq

n for any rational number q > 0.

2. Useful results

In this section, we collect various results that will help us in the study of the generating
functions we obtain in Section 3, 4 and 5. We begin with two simple facts about floor and
ceiling functions.

Fact 2.1. Let a, b be integers with a ≥ 0 and b > 0, then

1 +
⌊a
b

⌋
=

⌈
a+ 1

b

⌉
.

Proof. It follows from the following inequalities
⌊
a
b

⌋
≤ a

b
< a+1

b
≤
⌊
a
b

⌋
+ 1. □

The following fact characterizes the integers b such that
⌊
b
q

⌋
=
⌊
b+1
q

⌋
.

Fact 2.2. Let q = c/d and b ≥ 1. Then⌊
b

q

⌋
=

⌊
b+ 1

q

⌋
⇔ db mod c ∈ {0, . . . , c− d− 1}.

Proof. Let db = sc+ r, with s ≥ 0 and 0 ≤ r < c be the euclidean division of db by c. Then
b
q
= s+ r

c
, and b+1

q
= s+ r+d

c
. So, we have

s =

⌊
b

q

⌋
=

⌊
b+ 1

q

⌋
⇔ r + d

c
< 1 ⇔ 0 ≤ r < c− d.

□

The following technical lemma will help us to characterize the prime factors of meet-
irreducible elements in Theorem 5.2.

Lemma 2.3. Let q = c/d > 0 be a rational number. For every n ≥ 2 +
⌊
1
q

⌋
, there exists a

unique pair (a, b) of positive integers such that a+ b = n and 1 +
⌊
b
q

⌋
≤ a ≤ 1 +

⌊
b+1
q

⌋
.

Proof. Let b =
⌈

qn
q+1

⌉
− 1, and a = n− b. Since n ≥ 2 +

⌊
1
q

⌋
, we have 1 ≤ a, b ≤ n− 1. By

Fact 2.1, b =
⌈

cn
c+d

⌉
− 1 =

⌊
cn−1
c+d

⌋
. Then we have

1 +

⌊
b

q

⌋
≤ 1 +

db

c
= 1 +

d

c

⌊
cn− 1

c+ d

⌋
≤ 1 +

d

c
· cn− 1

c+ d
=

dn

c+ d
+ 1− d

c(c+ d)
.
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Since 1 +
⌊
b
q

⌋
is an integer, we actually have

1 +

⌊
b

q

⌋
≤
⌊

dn

c+ d
+ 1− d

c(c+ d)

⌋
≤ 1 +

⌊
dn

c+ d

⌋
=

⌈
dn+ 1

c+ d

⌉
,

where we used Fact 2.1 for the last equality. On the other hand,

a = n− b = n−
⌊
cn− 1

c+ d

⌋
=

⌈
n− cn− 1

c+ d

⌉
=

⌈
dn+ 1

c+ d

⌉
≥ 1 +

⌊
b

q

⌋
.

For the second inequality,

1 +

⌊
b+ 1

q

⌋
= 1 +

⌊
db+ d

c

⌋
=

⌈
db+ d+ 1

c

⌉
≥ db+ d+ 1

c
=

d+ 1

c
+

d

c

(⌈
cn

c+ d

⌉
− 1

)
≥ d+ 1

c
+

d

c
· cn

c+ d
− d

c
=

dn

c+ d
+

1

c
=

cdn+ c+ d

c(c+ d)
.

Since 1 +
⌊
b+1
q

⌋
is an integer, and by Fact 2.1, we actually have

1+

⌊
b+ 1

q

⌋
≥
⌈
cdn+ c+ d

c(c+ d)

⌉
= 1+

⌊
cdn+ c+ d− 1

c(c+ d)

⌋
= 1+

⌊
dn

c+ d
+

1

c
− 1

c(c+ d)

⌋
≥ 1+

⌊
dn

c+ d

⌋
.

On the other hand,

a = n− b = n−
⌈

cn

c+ d

⌉
+ 1 =

⌊
n− cn

c+ d

⌋
+ 1 =

⌊
dn

c+ d

⌋
+ 1 ≤ 1 +

⌊
b+ 1

q

⌋
.

For the uniqueness, suppose that (a, b), (a′, b′) are two such pairs with a < a′, and thus
b > b′. Then we would have

1 +

⌊
b′ + 1

q

⌋
≤ 1 +

⌊
b

q

⌋
≤ a ≤ a′ − 1 ≤

⌊
b′ + 1

q

⌋
,

which is a contradiction. □

In the following lemma, we determine the generating function of the sequence (⌊an+c
b

⌋)n∈N
where a, b and c are some integers satisfying a, b > 0, and we show that it can be expressed
as a rational function.

Lemma 2.4. Let a, b be two positive integers, relatively prime, and let c be an integer. Then
we have

+∞∑
n=0

⌊
an+ c

b

⌋
xn =

axb + (1− x)Qa,b,c(x)

(1− x)(1− xb)
,

with Qa,b,c(x) =
∑b−1

r=0

⌊
ar+c
b

⌋
xr.

Proof. Let n ∈ N, and let n = bk+ r be its euclidean division by b. Thus we have 0 ≤ r < b.
A simple calculation provides ⌊

an+ c

b

⌋
= ak +

⌊
ar + c

b

⌋
,
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and then
+∞∑
n=0

⌊
an+ c

b

⌋
xn =

+∞∑
k=0

b−1∑
r=0

(
ak +

⌊
ar + c

b

⌋)
xbk+r

=
+∞∑
k=0

xbk

(
ak

b−1∑
r=0

xr +Qa,b,c(x)

)

= a
1− xb

1− x

+∞∑
k=0

k(xb)k +Qa,b,c(x)
+∞∑
k=0

(xb)k

=
axb

(1− x)(1− xb)
+

Qa,b,c(x)

1− xb
.

□

Example 2.5. For instance, if a = 3, b = 5 and c = 2, then we have Q3,5,2(x) = x + x2 +
2x3 + 2x4, and

+∞∑
n=0

⌊
3n+ 2

5

⌋
xn =

3x5 + (1− x)(x+ x2 + 2x3 + 2x4)

(1− x)(1− x5)
=

x (x4 + x2 + 1)

(1− x) (1− x5)
.

The following lemma plays a key role in the computation of generating functions involving
a ceiling function in the exponent of x.

Lemma 2.6. Let g(x) =
∑+∞

n=0 anx
n, and let q = c

d
be a positive rational number. We define

the series gc/d as

gc/d(x) =
+∞∑
n=0

anx
1+⌊ (c+d)n

c ⌋.

Then we have

gc/d(x) =
1

c

c−1∑
j=0

c−1∑
k=0

ρ−kjg(ρkx
c+d
c )x1+⌊ jd

c ⌋− jd
c ,

where ρ = e2iπ/c is a primitive root of unity.

Proof. We start with the following two simple facts. For n ≥ 0, we have

1

c

c−1∑
k=0

ρkn =

{
1 if n ≡ 0 [c]
0 otherwise.

Furthermore, for j ∈ [0, c− 1], we have

(2.1)
1

c

c−1∑
k=0

ρ−kjg(ρkx) =
+∞∑
n=0

(
1

c

c−1∑
k=0

ρk(n−j)

)
anx

n =
+∞∑
n=0

acn+jx
cn+j.

Let n ≥ 0, and let n = cm+ j be its euclidean division by c. Then,

1 +

⌊
(c+ d)n

c

⌋
= 1 + (c+ d)m+

⌊
(c+ d)j

c

⌋
.
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Thus, the series
∑+∞

n=0 anx
1+⌊ (c+d)n

c ⌋ can be rewritten

+∞∑
n=0

anx
1+⌊ (c+d)n

c ⌋ =
+∞∑
m=0

c−1∑
j=0

acm+jx
1+(c+d)m+⌊ (c+d)j

c ⌋.

It then follows from (2.1) that

+∞∑
n=0

anx
1+⌊ (c+d)n

c ⌋ =
c−1∑
j=0

+∞∑
m=0

acm+jx
1+(c+d)m+⌊ (c+d)j

c ⌋ =
c−1∑
j=0

x1+⌊ jd
c ⌋− jd

c

c

c−1∑
k=0

ρ−kjg(ρkx
c+d
c ).

□

In the next proposition, we examine the special case where g is a rational function. In
particular, we provide a more efficient method for computing gc/d than the double sum given
in Lemma 2.6. Moreover we derive the asymptotic behavior of the coefficients of gc/d under
the assumption that g has a unique singularity of minimal modulus.

Proposition 2.7. Let g(x) = P (x)
Q(x)

be a rational power series, and let c/d be a positive

rational number, with c and d relatively prime. Then the following two statements hold.

(1) gc/d is rational, and gc/d(x) = N(x)/D(x), where{
D(x) =

∏c−1
k=0Q(ρkx1+d/c), with ρ = e

2iπ
c ,

N(x) =
∑m

k=0 akx
1+⌊ (c+d)k

c ⌋, where P (x)
∏c−1

k=1Q(ρkx) =
∑m

k=0 akx
k.

(2) Suppose further that [xn]g(x) ∼
n→∞

C · α−n for some constant C and α > 0. Then

there exists a nonzero polynomial T ∈ C[X] with degree at most c+ d− 1 such that

[xn]gc/d(x) ∼
n→∞

T (rn) · α− cn
c+d ,

with r = e
2iπ
c+d .

Proof. (1) Let g(x) = P (x)
Q(x)

with P andQ relatively prime. Let ρ = e
2iπ
c , and for k = 0, . . . , c− 1,

let Rk(x) =
∑c−1

j=0 ρ
−kjx1+⌊ jd

c ⌋− jd
c (this is a polynomial in x

1
c ). By Lemma 2.6,

gc/d(x) =
1

c

c−1∑
i=0

Rk(x)
P (ρkx1+d/c)

Q(ρkx1+d/c)
=

N(x)

D(x)
,

where D(x) =
∏c−1

k=0 Q(ρkx1+d/c), and

N(x) =
1

c

c−1∑
k=0

Rk(x)P (ρkx1+d/c)
∏
j ̸=k

Q(ρjx1+d/c).

We begin by analyzing D(x). To this end, suppose first that Q(x) = x− α. Then we have

D(x) = (x1+d/c − α)(ρx1+d/c − α) . . . (ρc−1x1+d/c − α)

=

(
c−1∏
k=0

ρk

)
xc+d − α

(
c−1∑
k=0

∏
ℓ̸=k

ρℓ

)
x

(c−1)(d+c)
c + . . .
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+ (−αj)

 ∑
0≤k1<...<kj≤c−1

∏
ℓ̸∈{k1,...,kj}

ρℓ

x
(c−j)(d+c)

c + . . .+ (−α)c.

It follows from the Vieta’s formulas for the polynomial xc−1 that the above expression sim-
plifies D(x) = (−1)c+1(xc+d−αc). Thus for a general polynomial Q(x) = λ

∏s
k=1(x− αk)

mk ,
we have

(2.2) D(x) = λc

s∏
k=1

(−1)(c+1)mk(xc+d − αc
k)

mk .

In particular,D(x) is a polynomial. Now let us focus onN(x). Let S(x) = P (x)
∏c−1

k=1 Q(ρkx).
Then we have

N(x) =
1

c

c−1∑
k=0

Rk(x)S(ρ
kx1+d/c).

Therefore, by Lemma 2.6, if S(x) =
∑m

k=0 akx
k, then N(x) =

∑m
k=0 akx

1+⌊ (c+d)k
c ⌋, which is

also a polynomial.
(2) Now suppose that [xn]g(x) ∼

n→∞
C · α−n for some constants C and α > 0. Then α is

the unique root of Q(x) of minimal modulus. By (2.2), the smallest roots of D(x) are then

α
c

c+d , rα
c

c+d , . . . , rc+d−1α
c

c+d , with r = e
2iπ
c+d . We can check that at least α

c
c+d is a singularity

of gc/d, because

N(α
c

c+d ) =
1

c
R0(α

c
c+d )P (α)

∏
j ̸=0

Q(ρjα) ̸= 0.

Indeed, for j ̸= 0, we have Q(ρjα) ̸= 0 since α is the unique root of Q with modulus
|α|; moreover, P (α) ̸= 0 because P and Q are relatively prime; and finally, R0(x) =∑c−1

j=0 α
c

c+d(1+⌊ jd
c ⌋− jd

c ) > 0, since α > 0. We deduce that there exist some constants
c0, . . . , cc+d−1, with c0 ̸= 0 such that

[xn]gc/d(x) ∼
n→∞

(c0 + c1r
n + . . .+ cc+d−1r

(c+d−1)n)α− cn
c+d .

□

Example 2.8. Let g(x) = 1
1−αx

. Then by Lemma 2.6,

g2(x) =
1

2

(
x+ x1/2

1− αx3/2
+

x− x1/2

1 + αx3/2

)
=

x(1 + αx)

1− α2x3
.

Using routine singularity analysis (see e.g. [12]), we deduce that

[xn]g2(x) ∼
n→∞

(c0 + c1j
n + c2j

2n)α2n/3,

where j = e
2iπ
3 and ck =

jkα−1/3(1+jkα−1/3)
3

for k = 0, 1, 2. Furthermore,

c0 + c1j
n + c2j

2n =


0 if n = 0 mod 3,

α−2/3 if n = 1 mod 3,
α−1/3 if n = 2 mod 3.
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3. Join-irreducible elements and coverings

In this section, we provide enumerative results for classical parameters of a lattice, namely
the join-irreducible elements, as well as covering relations. The enumeration of meet-
irreducible elements is a bit more intricate, so we treat it in Section 5. We first give the
enumeration of join-irreducible elements for any q > 0, and then we conclude by giving
closed form for the generating functions of the covering for positive rational numbers q,
and a method for computing arbitrarily many terms of the generating functions for positive
irrational numbers q.

3.1. Join-irreducible elements.

Theorem 3.1. For q > 0 and n ≥ 1, there are exactly n join-irreducible elements in Wq
n.

Proof. In a finite lattice, an element is join-irreducible if and only if it covers exactly one
element. We therefore count the words in Wq

n that cover exactly one element. Note that a
factor 0a1b, with qa > b ≥ 1 covers only one element if and only if b = 1 (otherwise it covers
0a1b−10 and 0a+11b−1). Now we investigate the elements covered by 1m. Given i ≥ 0, there
is at most one word covered by 1m with suffix 01i. So the words covered by 1m are exactly

1n−10, 1n−α1−10α11, . . . , 1n−αk−k0αk1k,

where αi = 1 +
⌊

i
q

⌋
is the smallest integer such that q · αi > i, and k =

⌈
qm
q+1

⌉
− 1 is the

largest integer such that αk ≤ m− k. Thus, a factor 1m covers only one element if and only

if
⌈

qm
q+1

⌉
= 1, i.e. if and only if 1 ≤ m ≤ 1 +

⌊
1
q

⌋
. So, taking a word w ∈ Wq

n, and its

decomposition
w = 1m0a11b1 . . . 0ak1bk0ℓ,

w is join-irreducible if and only if m = 0, k = 1, b1 = 1 and qa1 > 1, or 1 ≤ m ≤ 1 +
⌊
1
q

⌋
and k = 0. Thus, the generating function for the number of join-irreducible elements in Wq

n

is ∑
qa>1 x

a+1

1− x
+

x+ x2 + . . .+ x1+⌊ 1
q⌋

1− x
=

x2+⌊ 1
q⌋

(1− x)2
+

x− x2+⌊ 1
q⌋

(1− x)2
=

x

(1− x)2
.

This proves that for any rational q, there are n join-irreducible elements in Wq
n. □

3.2. Coverings.

Proposition 3.2. Let v, w ∈ Wq
n. Writing w = 1m0a11b1 . . . 0ak1bk0ℓ with m, ℓ ≥ 0, and

q · ai > bi ≥ 1 for 1 ≤ i ≤ k, we suppose that v = u1v1 . . . vku0, with |u1| = m, |u0| = ℓ, and
|vi| = ai + bi for 1 ≤ i ≤ k. Then w covers v (v ⋖ w) if and only if u0 = 0ℓ, and one of the
following two statements holds:

(1) u1 ⋖ 1m and vi = 0ai1bi for 1 ≤ i ≤ k,
(2) u1 = 1m and there exists a unique i such that vi ⋖ 0ai1bi , and vj = 0aj1bj for j ̸= i.

Proof. The implication from right to left being easy to check, we focus on the converse.
Suppose that v ⋖ w, i.e. w covers v. In particular, u1 ≤ 1m, u0 ≤ 0ℓ and vi ≤ 0ai1bi for
1 ≤ i ≤ k. Then we necessarily have u0 = 0ℓ. Now assume that among u1, v1, . . . , vk, there
are at least two of them (say for instance and without loss of generality u1 and v1) such that
u1 < 1m and v1 < 0a11b1 . Then we would have v < 1mv1 . . . vk0

ℓ < w, contradicting v⋖w. If
9



we had chosen v1 < 0a11b1 and v2 < 0a21b2 , then the inequalities v < 1m0a11b1v2 . . . vk0
ℓ < w

would have also led to a contradiction. So there is exactly one word among u1, v1, . . . , vk
such that u1 ⋖ 1m or vi ⋖ 0ai1bi . □

Let Aq(x) be the generating function for the number of coverings of the form ν ⋖ 1m. Let
Bq(x) denote the generating function for the number of coverings of the form v ⋖ 0a1b with
q · a > b ≥ 1. Let Dq(x) denote the generating function for the number of elements in Wq

n of
the form 0a1b with q · a > b ≥ 1.

Proposition 3.3. Let q > 0 be a real number, and let Cq(x) denote the generating function
for the number of coverings in Wq

n. Then

Cq(x) =
Aq(x)

(1− x)(1−Dq(x))
+

Bq(x)

(1− x)2(1−Dq(x))2
.

Proof. Using Proposition 3.2, coverings of the form (1) are in one-to-one correspondence
with words v = u1v1v2 . . . vk0

ℓ satisfying u1 ⋖ 1m and vi = 0ai1bi for 1 ≤ i ≤ k; thus they
contribute to

Aq(x)

(1− x)(1−Dq(x))
.

Coverings of the form (2) are in one-to-one correspondence with words v = 1mv1v2 . . . vk0
ℓ

such that there is a unique i with vi ⋖ 0ai1bi and vj = 0aj1bj for j ̸= i; thus they contribute
to

Bq(x)

(1− x)2(1−Dq(x))2
.

Considering these two cases, the expected result follows. □

The next proposition establishes the explicit forms of Aq(x), Bq(x) and Dq(x) for any
q > 0.

Proposition 3.4. For any real q > 0, we have

Aq(x) =
+∞∑
n=1

⌈
qn

q + 1

⌉
xn, Bq(x) =

1

1− x

+∞∑
b=1

⌈
qb+ 1

q + 1

⌉
x1+b+⌊ b

q⌋,

and Dq(x) =
1

1− x

+∞∑
b=1

x1+b+⌊ b
q⌋.

Proof. The proof is divided into three parts, each corresponding to Aq(x), Bq(x) and Dq(x)
respectively.

• As we saw in the proof of Theorem 3.1, for n ≥ 1, the words v ∈ Wq
n such that v⋖1n

are exactly

1n−10, 1n−α1−10α11, . . . , 1n−αk−k0αk1k,

where αi = 1 +
⌊

i
q

⌋
is the smallest integer such that q · αi > i, and k =

⌈
qn
q+1

⌉
− 1 is

the largest integer such that αk ≤ n − k. Indeed for each i ∈ [0, k], there is exactly

one word covered by 1n with suffix 01i. So there are exactly
⌈

qn
q+1

⌉
words covered by

1n in Wq
n, hence the expression of Aq(x).

10



• Let a, b be positive integers such that q · a > b ≥ 1. The words v ∈ Wq
n such that

v ⋖ 0a1b are exactly

0a1b−10, 0a1b−α1−10α11, . . . , 0a1b−αk−k0αk1k, 0a+11b−1,

where αi = 1 +
⌊

i
q

⌋
is the smallest integer such that q · αi > i, and k =

⌈
q(b−1)
q+1

⌉
− 1

is the largest integer such that αk ≤ b− k − 1. So there are exactly

2 +

⌈
q(b− 1)

q + 1

⌉
− 1 =

⌈
qb+ 1

q + 1

⌉
words covered by 0a1b in Wq

n. Then we have

Bq(x) =
+∞∑
b=1

+∞∑
qa>b

⌈
qb+ 1

q + 1

⌉
xa+b =

1

1− x

+∞∑
b=1

⌈
qb+ 1

q + 1

⌉
x1+b+⌊ b

q⌋.

• We directly have

Dq(x) =
+∞∑
b=1

+∞∑
qa>b

xa+b =
1

1− x

+∞∑
b=1

x1+b+⌊ b
q⌋.

□

In the case where q = c/d is rational, Proposition 3.4 and Proposition 2.7 provide a closed
form for Aq(x), Bq(x) and Dq(x).

Proposition 3.5. For q = c/d a rational, we have

Aq(x) = 1 +
x

1− x
+

cxc+d + (1− x)
∑c+d−1

r=0

⌊
cr−1
c+d

⌋
xr

(1− x)(1− xc+d)
, Dq(x) =

∑c
k=1 x

1+⌊ (c+d)k
c ⌋

(1− x)(1− xc+d)
,

and Bq(x) =
a0x+ a1x

1+⌊ c+d
c ⌋ + . . .+ amx

1+⌊ (c+d)m
c ⌋

(1− x)(1− xc+d)(1− x(c+d)2)
,

where a0, . . . , am are the coefficients of the polynomial(
x(1− xc+d) + cxc+d + (1− x)

c+d−1∑
r=0

⌊
cr + d− 1

c+ d

⌋
xr

)
(1+x+. . .+xc−1)(1+xc+d+. . .+x(c+d)(c−1)).

Proof. It follows from Proposition 3.4 and Fact 2.1 that

Aq(x) =
+∞∑
n=1

⌈
cn

c+ d

⌉
xn =

+∞∑
n=1

(
1 +

⌊
cn− 1

c+ d

⌋)
xn =

x

1− x
+

+∞∑
n=0

⌊
cn− 1

c+ d

⌋
xn − (−1).

The desired expression follows from Lemma 2.4. Using Proposition 2.7, we directly deduce

Dq(x) =

∑c
k=1 x

1+⌊ (c+d)k
c ⌋

(1− x)(1− xc+d)
.

Once again using Fact 2.1, we have⌈
qb+ 1

q + 1

⌉
=

⌈
cb+ d

c+ d

⌉
= 1 +

⌊
cb+ d− 1

c+ d

⌋
.

11



By Lemma 2.4 we have,
+∞∑
b=1

(
1 +

⌊
cb+ d− 1

c+ d

⌋)
xb =

x

1− x
+

cxc+d + (1− x)
∑c+d−1

r=0

⌊
cr+d−1
c+d

⌋
xr

(1− x)(1− xc+d)

=
x(1− xc+d) + cxc+d + (1− x)

∑c+d−1
r=0

⌊
cr+d−1
c+d

⌋
xr

(1− x)(1− xc+d)
.

Now it suffices to apply Proposition 2.7 to the above expression to obtain a closed form of

Bq(x). Observing that
∏c−1

k=0(1− e
2iπk
c x)(1− e

2iπ(c+d)k
c xc+d) = (1− xc)(1− xc(c+d)), and

c−1∏
k=1

(1− e
2iπk
c x)(1− e

2iπ(c+d)k
c xc+d) =

(1− xc)(1− xc(c+d))

(1− x)(1− xc+d)

= (1 + x+ . . .+ xc−1)(1 + xc+d + . . .+ x(c+d)(c−1)),

the expression of Bq(x) then follows from Proposition 2.7. □

Example 3.6. For instance, whenever q ∈ {1, 2, 1/2, 1/3}, we obtain:

C1(x) =
x(x6 + x3 − x2 + x− 1)

(x− 1)(x2 + 1)(x2 + x− 1)2

= x+ 2x2 + 5x3 + 10x4 + 20x5 + 38x6 + 70x7 + 127x8 + 228x9 +O(x10);

C2(x) =
x(x12 + x10 + 2x8 + 2x5 − x4 − x3 + 2x2 − x− 1)

(x− 1)(x6 + x3 + 1)(x3 + x2 + x− 1)2

= x+ 4x2 + 9x3 + 22x4 + 50x5 + 108x6 + 229x7 + 476x8 + 976x9 +O(x10);

C1/2(x) =
x(x12 + x9 + x7 − x6 + x4 − x3 + x− 1)

(x− 1)(x6 + x3 + 1)(x3 + x− 1)2

= x+ 2x2 + 3x3 + 6x4 + 11x5 + 18x6 + 30x7 + 50x8 + 81x9 +O(x10);

C1/3(x) =
x(x20 + x16 + x13 + x9 − x8 + x5 − x4 + x− 1)

(x− 1)(x4 + 1)(x8 + 1)(x4 + x− 1)2

= x+ 2x2 + 3x3 + 4x4 + 7x5 + 12x6 + 19x7 + 28x8 + 42x9 +O(x10).

Example 3.7. When q is irrational, we do not have closed forms for the generating functions
Aq(x), Bq(x) and Dq(x). However we can compute the first terms to deduce the first values

in the Taylor expansion of Cq(x). For instance, for q ∈ {
√
2, π/4, e}, we obtain

C√
2(x) = x+ 4x2 + 9x3 + 22x4 + 46x5 + 100x6 + 207x7 + 425x8 + 856x9 +O(x10),

Cπ/4(x) = x+ 2x2 + 5x3 + 10x4 + 20x5 + 38x6 + 70x7 + 127x8 + 224x9 +O(x10),

Ce(x) = x+ 4x2 + 12x3 + 28x4 + 67x5 + 154x6 + 343x7 + 749x8 + 1615x9 +O(x10).

Corollary 3.8. Let q > 0 be a positive real number. Recall that Φ(q)−1 is the smallest root
in modulus of the equation Dq(x) = 1 ([4]). There exists a constant cq > 0 such that

[xn]Cq(x) ∼
n→∞

cq · n · Φ(q)n.
12



Proof. It follows from routine asymptotic analysis. Indeed, from Proposition 3.4, Aq(x) and
Bq(x) clearly have a radius of convergence of at least 1. So their smallest singularities are
greater than Φ(q)−1, which is smaller than 1. So by Proposition 3.3, the smallest singularity
of Cq(x) is then Φ(q)−1. Furthermore, this singularity has multiplicity 2, hence the factor n
in the asymptotic. □

4. Intervals

In this section, we focus on the enumeration of intervals inWq
n for positive rational numbers

q. An interval I = {u ∈Wq
n| v ≤ u ≤ w} is denoted [v, w], it will be called prime whenever

w is prime, i.e. w = 0a1b with q · a > b ≥ 1.
Let Pq(x) be the generating function for the number of prime intervals in Wq

n, and Iq(x)
the one for the number of all intervals. The following proposition below establishes that the
computation of Pq(x) suffices to deduce the enumeration of all intervals.

Proposition 4.1. For any real q > 0, the generating function for the number of intervals is
given by

Iq(x) =
Wq(x)

(1− x)(1− Pq(x))
.

Proof. Let [v, w] be an interval in Wq
n, and let us consider the decomposition of w:

w = 1m0a11b1 . . . 0ak1bk0ℓ,

where 0ai1bi are prime factors. We take the decomposition of v that is chosen to be compatible
with that of w:

v = u1v1 . . . vku0,

with |u1| = m, |u0| = ℓ, and for all i ∈ [1, k], |vi| = ai + bi.
By the definition of the relation ≤, we have u1 ≤ 1m, u0 ≤ 0ℓ, and for all i ∈ [1, k],

vi ≤ 0ai1bi , so u1 ∈ Wq
m, u0 = 0ℓ, and [vi, 0

ai1bi ] is a prime interval for all i. Conversely,
given u ∈ Wq

m and some prime intervals [vi, 0
ai1bi ], then [uv1 . . . vk0

ℓ, 1m0a11b1 . . . 0ak1bk0ℓ] is
an interval. The generating function for the number of elements u ∈ Wq

m is Wq(x), the one
for the number of sequences 0ℓ is 1

1−x
, and the one for the number of sequences of prime

intervals is 1
1−Pq(x)

. The result then follows. □

Since Wq(x) is known for any q > 0, we now focus on the computation of Pq(x).

Theorem 4.2. Let q = c/d be a positive rational number. Then we have

Pq(x) =
Γc/d(x)

1− x
,

where Γc/d(x) =
∑+∞

n=0 anx
1+⌊ (c+d)n

c ⌋, with Γ(x) = x(1+Wq(x))

1−x
=
∑+∞

n=0 anx
n.

Proof. Let a, b be such that q · a > b ≥ 1, and w = 0a1b. Then v ∈ Wq
a+b satisfies v ≤ w if

and only if v = 0a+b or v = 0a+k1ν for some k ∈ [0, b− 1], and ν ∈ Wq
b−k−1. Consequently,

Pq(x) =
+∞∑
b=1

∑
a≥1+⌊ bd

c ⌋

(
1 +

b−1∑
k=0

|Wq
b−k−1|

)
xa+b =

+∞∑
b=1

∑
a≥1+⌊ bd

c ⌋

(
1 +

b−1∑
k=0

|Wq
k |

)
xa+b

13



=
+∞∑
b=1

(1 + b−1∑
k=0

|Wq
k |

)
xb

+∞∑
a=1+⌊ bd

c ⌋
xa

 =
+∞∑
b=1

(
1 +

b−1∑
k=0

|Wq
k |

)
x1+b+⌊ bd

c ⌋

1− x
.

Since
∑+∞

b=1

(
1 +

∑b−1
k=0 |W

q
k |
)
xb = Γ(x), the result directly follows from the definition of

Γc/d(x) (see Lemma 2.6). □

Corollary 4.3. Let q = c/d be a positive rational number, and define the polynomial

Πq = 1− xc+d −
∑c−1

i=0 x
1+i+⌊ i

q⌋.

(1) Let ρ = e
2iπ
c and m = c(c+ d+ 2). Then

Pq(x) =

∑m
k=0 akx

1+k+⌊ k
q ⌋

(1− xc+d)2
∏c−1

k=0Πq(ρkx
1+ d

c )
,

where
∑m

k=0 akx
k = x

(
1− xc+d + (1− x)Πq(x)

)
(1 + x+ . . .+ xc−1)2

∏c−1
k=1Πq(ρ

kx).

(2) Let r = e
2iπ
c+d . There exists a nonzero polynomial T ∈ C[X] with degree at most

c+ d− 1 such that

[xn]Pq(x) ∼
n→∞

T (rn) · Φ(q)
cn
c+d .

Proof. It directly follows from Theorem 4.2 and Proposition 2.7, since

Γ(x) =
x(1− xc+d + (1− x)Πq(x))

(1− x)2Πq(x)
,

and [xn]Γ(x) ∼
n→∞

cq · Φ(q)n for some constant cq > 0. □

Example 4.4. When q = 1, we have P1(x) =
x3(x4−2)

(x−1)2(x+1)(x4+x2−1)
, and

I1(x) =
(1− x)(1 + x)2(x4 + x2 − 1)

(x6 − 2x2 − x+ 1)(x2 + x− 1)

= 1 + 3x+ 6x2 + 13x3 + 27x4 + 56x5 + 115x6 + 234x7 + 474x8 + 955x9 +O(x10).

Furthermore, we have

I2(x) =
(1− x)(x9 + x6 + 3x3 − 1)(x2 + x+ 1)2

(x12 − x7 + 2x6 − 4x3 − 2x2 − x+ 1)(x3 + x2 + x− 1)

= 1 + 3x+ 9x2 + 22x3 + 57x4 + 145x5 + 363x6 + 909x7 + 2261x8 + 5608x9 +O(x10),

I2/3(x) =
(1− x)(x4 + x3 + x2 + x+ 1)2(x25 + 2x20 + 3x15 + 2x10 + x5 − 1)

(x30 − x26 + x25 − x23 − 2x21 + x20 − 2x18 − 3x16 − x15 − 4x13 − 3x11 − x10 − 3x8 − 2x6 − 2x5 − 2x3 − x+ 1)(x5 + x3 + x− 1)

= 1 + 3x+ 6x2 + 13x3 + 27x4 + 51x5 + 100x6 + 196x7 + 376x8 + 723x9 +O(x10),

I3/2(x) = (1− x)(x25 + 4x20 + 9x15 + 10x10 + 4x5 − 1)(x4 + x3 + x2 + x+ 1)2

(x5 + x4 + x2 + x− 1)(x30 − x26 + 3x25 − x22 − 3x21 + 5x20 − x19 − 4x17 − 5x16 + x15 − 5x14 − 6x12 − 5x11 − 6x10 − 8x9 − 5x7 − 3x6 − 5x5 − 4x4 − 2x2 − x+ 1)

= 1 + 3x+ 9x2 + 22x3 + 57x4 + 136x5 + 336x6 + 811x7 + 1966x8 + 4721x9 +O(x10).
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5. Meet-irreducible elements in Wq
n for rational numbers q > 0

In this section we start by giving a closed form for the generating function of meet-
irreducible elements inWq

n for rational numbers q in ]0, 1], which is the simplest case among
positive rational numbers. Then we give a general method to compute the generating func-
tion for rational numbers q greater than 1.

5.1. Meet-irreducible elements inWq
n for a rational number 0 < q ≤ 1. The following

easy fact enables us to consider only meet-irreducible elements starting with 0.

Fact 5.1. Let m,n ≥ 1 be two integers. If w ∈ Wq
n, then w is meet-irreducible if and only

if 1mw ∈Wq
n+m is meet-irreducible.

Theorem 5.2. Let q = c/d be a rational number with 0 < q ≤ 1. The generating function
M(x) for the number of meet-irreducible elements in Wq

n is

M(x) =
x2+⌊d/c⌋(x− 1)A− (x− 1)A2 + x2

(x− 1) ((1− Ax2+⌊d/c⌋ + Ax3+⌊d/c⌋ + (x− 1)(x+ A− A2))
,

with A =
∑c

i=1 x
1+i+⌊ id

c ⌋
1−xc+d .

Proof. Considering Fact 5.1, we focus on meet-irreducible elements starting with 0.
Furthermore, let us consider the meet-irreducible elements ending with 1. These elements

can be written as concatenations of factors of the form 0a1b:

w = 0a11b1 . . . 0ak1bk ,

with q · ai > bi ≥ 1 (which is equivalent to ai ≥ 1 +
⌊
dbi
c

⌋
).

Note that each factor of such a meet-irreducible element satisfies ai ≤ 1 +
⌊
d(bi+1)

c

⌋
.

Otherwise it would mean that 0a−11b+1 ∈ Wq
a+b, and so w would be smaller than both

1a1+b1 . . . 0ai1bi . . . 0ak1bk , and 0a11b1 . . . 0ai−11bi+1 . . . 0ak1bk , which are not comparable, con-
tradicting the meet-irreducibility.

Thus, each factor in w of the form 0a1b satisfies

(5.1) 1 +

⌊
db

c

⌋
≤ a ≤ 1 +

⌊
d(b+ 1)

c

⌋
,

and conversely, if (a, b) satisfy (5.1), then 0a1b is a prime factor of a meet-irreducible element.
We now classify the factors satisfying (5.1) into three sets A, B, C (not necessarily disjoint):

• A consists of the factors 0a1b such that

0a−11b ̸∈Wq
a+b−1 and 0a1b+1 ̸∈Wq

a+b+1,

• B consists of the factors 0a1b such that

0a−11b ∈Wq
a+b−1,

• C consists of the factors 0a1b such that

0a1b+1 ∈Wq
a+b+1.
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For 0 < q ≤ 1, we have C ⊆ B (see also (5.2) below), and A∩B = ∅. The crucial condition on
the meet-irreducible elements is that they cannot have a factor from C consecutively followed
by a factor from B (what we call a pattern CB). For instance, assume w = 0a11b10a21b2 with
0a11b1 ∈ C and 0a21b2 ∈ B. Then w is smaller than both 1a1+b10a21b2 , and 0a11b1+10a1−11b1 ,
which are incomparable, contradicting the meet-irreducibility. Similar examples can be built
for words w with any number of factors. Conversely, one can check that any word which is
a product of factors 0a1b satisfying (5.1), and avoiding the consecutive pattern CB, is meet-
irreducible. Let M1(x) be the generating function of such words, i.e. meet-irreducible words
starting with 0 and ending with 1. Counting these words is equivalent to count non-empty
sequences of factors from the disjoint sets A, B\C, C avoiding consecutive factors uv, where
u ∈ C, and v ∈ (B\C) or v ∈ C. It means that a factor from C is either at the end of the word
or followed by a factor from A. Then we have

M1(x) =
A+B + CA

1− A− (B − C)− CA
,

where A,B,C are the generating functions of the factors in A, B, C, respectively.
Now let us study meet-irreducible elements starting with 0 and ending with 0. They have

the following form:

w = 0a11b1 . . . 0ak1bk0ℓ,

with 1 +
⌊
dbi
c

⌋
≤ ai ≤ 1 +

⌊
d(bi+1)

c

⌋
, w avoids the consecutive pattern CB, and 1 ≤ ℓ ≤

1 +
⌊
d
c

⌋
. Indeed, if ℓ > 1 +

⌊
d
c

⌋
, we would have w smaller than both 1a1+b1 . . . 0ak1bk0ℓ

and 0a11b1 . . . 0ak1bk0ℓ−11, which are not comparable. Moreover, 0ak1bk ̸∈ C, otherwise w
would be smaller than both 1a1+b1 . . . 0ak1bk0ℓ, and 0a11b1 . . . 0ak1bk+10ℓ−1, which are not
comparable. Conversely, such words w are indeed meet-irreducible. Since the generating

function for words counted by M1(x) and not ending with C is A+(B−C)+CA
1−A−(B−C)−CA

, we deduce

that the generating function M0(x) for meet-irreducible elements starting with 0 and ending
with 0 is

M0(x) = x+ . . .+ x1+⌊ d
c⌋ + A+ (B − C) + CA

1− A− (B − C)− CA
(x+ . . .+ x1+⌊ d

c⌋).

Using Fact 5.1, we deduce that the generating functionM(x) for all meet-irreducible elements
is

M(x) =
M0(x) +M1(x)

1− x
.

To complete the proof it remains to compute the generating functions A,B and C. Let us
first characterize the factors belonging to respectively A, B and C. By checking the inequality
defining Wq, we have

(5.2) 0a1b ∈ B ⇔ a ≥ 2 +

⌊
db

c

⌋
, and 0a1b ∈ C ⇔ a = 1 +

⌊
d(b+ 1)

c

⌋
.

Since for every b ≥ 1, 1 +
⌊
db
c

⌋
< 1 +

⌊
d(b+1)

c

⌋
, we have

(5.3) 0a1b ∈ A ⇔ a = 1 +

⌊
db

c

⌋
.

16



By Lemma 2.3, for each n ≥ 2 +
⌊
d
c

⌋
, there exists a unique factor 0a1b with length n such

that 1 +
⌊
db
c

⌋
≤ a ≤ 1 +

⌊
d(b+1)

c

⌋
. So the generating function of all factors satisfying (5.1)

is x
2+⌊ d

c⌋
1−x

. Since A and B are disjoint, and A ∪ B contains all factors 0a1b satisfying (5.1),

A+B = x
2+⌊ d

c⌋
1−x

. By (5.2) and (5.3), we have

A =
+∞∑
b=1

x1+b+⌊ db
c ⌋ and C =

+∞∑
b=1

x1+b+⌊ d(b+1)
c ⌋ =

A

x
− x1+⌊ d

c⌋.

Using Proposition 2.7, we deduce A =
∑c

i=1 x
1+i+⌊ di

c ⌋
1−xc+d . The desired expression of M(x) follows

after plugging B = x
2+⌊ d

c⌋
1−x

−A and C = A
x
−x1+⌊ d

c⌋ inM0(x) andM1(x), and simplifying. □

Remark 5.3. If w is meet-irreducible and w ⋖ v with v ̸= 1n, then v is meet-irreducible,
which means that the set of meet-irreducible elements, with 1n, forms an upper ideal.

5.2. Meet-irreducible elements in Wq
n for a rational number q > 1. The enumeration

of meet-irreducible elements for q > 1 proceeds similarly to the case 0 < q ≤ 1 discussed in
Theorem 5.2, although it is slightly more involved. As seen in Theorem 5.2, the structure of
meet-irreducible elements for 0 < q ≤ 1 can be described in terms of words over a three-letter
alphabet avoiding a consecutive pattern of length 2. As we will see in this section, for q > 1,
the structure of meet-irreducible elements corresponds to that of words over an alphabet of
2⌈q⌉+ 1 letters avoiding ⌈q⌉2 + 2⌈q⌉ − 1 consecutive patterns of length 2.

The general pattern avoided. Fact 5.1 still holds, and we start by focusing on words
starting with 0 and ending with 1. Still as in the proof of Theorem 5.2, such meet-irreducible

words are products of factors 0a1b, with 1 +
⌊
b
q

⌋
≤ a ≤ 1 +

⌊
b+1
q

⌋
. Among these factors, we

distinguish the same 3 sets:

• A consists of the factors 0a1b ̸∈ C,
• B consists of the factors 0a1b such that

0a−11b ∈Wq
a+b−1, and a ≥ 2,

• C consists of the factors 0a1b such that

0a1b+1 ∈Wq
a+b+1.

Note that we added the condition a ≥ 2 in B, which was always guaranteed for q ≤ 1, but no
longer for q > 1. Furthermore, since q > 1, we have B ⊆ C, in contrast to the case 0 < q ≤ 1
(see (5.4) below). As in the proof of Theorem 5.2, the crucial condition on meet-irreducible
elements is that they cannot have a factor from C consecutively followed by a factor from B.
The additional patterns avoided. In the case q > 1, the avoidance of the pattern CB

is no longer sufficient to characterize meet-irreducible elements starting with 0 and ending
with 1. Actually, the factors having only one 0, namely 01, 011, . . . , 01⌈q⌉−1, play a special
role (there are no such factors for q ≤ 1).
From the definitions of A, B and C, we see that 01, . . . , 01⌈q⌉−2 ∈ C, and 01⌈q⌉−1 ∈ A.

These factors play a special role since 01i cannot follow a factor 0a1b such that 0a1b+i+1

is q-decreasing, which would create an extra upper cover. So let us define new sets Di for
1 ≤ i ≤ ⌈q⌉ − 1:
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• Di consists of the factors 0a1b such that

0a1b+i+1 ∈Wq
a+b+i+1.

Then the patterns Di01
i (i.e. factors in Di followed by 01i) are also forbidden in a meet-

irreducible element.
Forming the letters. Now we have described all the patterns avoided by a meet-

irreducible element. However, there is one more step before converting fully our problem
into a pattern avoiding problem on words. Indeed, the sets we consider, A, B, C, the Di’s and
the 01i’s are not disjoint. So we want to split them into disjoint sets in order to express
properly the patterns avoided. One can check the following inclusions:

D⌈q⌉−1 ⊆ B ⊆ D⌈q⌉−2 ⊆ D⌈q⌉−3 ⊆ . . . ⊆ D2 ⊆ D1 ⊆ C.

Moreover, 01⌈q⌉−1 ∈ A, 01⌈q⌉−2 ∈ C\D1, and 01⌈q⌉−2−i ∈ Di\Di+1 for 1 ≤ i ≤ ⌈q⌉ − 3. We then
define the following 2⌈q⌉+ 1 disjoint sets that will correspond to our letters:

a = A\{01⌈q⌉−1}, b = {01⌈q⌉−1},
c = C\(D1 ∪ {01⌈q⌉−2}), d = B\D⌈q⌉−1, e = D⌈q⌉−1,

fi = {01i} for 1 ≤ i ≤ ⌈q⌉ − 2,
gi = Di\(Di+1 ∪ {01⌈q⌉−2−i}) for 1 ≤ i ≤ ⌈q⌉ − 3, and g⌈q⌉−2 = D⌈q⌉−2\B.

Let also a,b, c,d,e, f 1, . . . , f ⌈q⌉−2,g1, . . . ,g⌈q⌉−2 denote respectively the generating functions
of the corresponding sets.

The matrix of forbidden patterns. We now have 2⌈q⌉ + 1 letters, a, b, c, d, e,
f1, . . . , f⌈q⌉−2, g1, . . . , g⌈q⌉−2. The avoidance of CB, and Di01

i for 1 ≤ i ≤ ⌈q⌉ − 1 then
translates in the following ⌈q⌉2 + 2⌈q⌉ − 1 forbidden patterns in terms of letters:

cd, ce, dd, de, eb, ed, ee,

dfi, efi, fid, fie, gid, gie, gifi, gifi−1, . . . , gif1 for 1 ≤ i ≤ ⌈q⌉ − 2,

and fif⌈q⌉−2−i, fif⌈q⌉−3−i, . . . , fif1 for 1 ≤ i ≤ ⌈q⌉ − 3.

For ℓ ∈ {a, b, c, d, e, f1, . . . , f⌈q⌉−2, g1, . . . , g⌈q⌉−2}, let Mℓ denote the generating function
of words on these 2⌈q⌉+ 1 letters, avoiding these ⌈q⌉2 + 2⌈q⌉ − 1 patterns, and ending with
the letter ℓ. The patterns then induce structure on the Mℓ’s, for instance the letter a can be
preceded by any letter, so

Ma = a+ (Ma +Mb +Mc +Md +Me +Mf1 + . . .+Mf⌈q⌉−2
+Mg1 + . . .+Mg⌈q⌉−2

) · a.

The letter d can be preceded only by a or b, so

Md = d+ (Ma +Mb) · d.

By doing this for each letter, we obtain a system on the Mℓ’s. By solving it we obtain an
expression of each Mℓ in terms of a,b, . . . ,g⌈q⌉−2, that we compute in the next paragraph.
The generating function of meet-irreducible elements starting with 0 and ending with 1 is
then

M1 = Ma +Mb +Mc +Md +Me +Mf1 + . . .+Mf⌈q⌉−2
+Mg1 + . . .+Mg⌈q⌉−2

.

A meet-irreducible elements starts with 0 and ends with 0 if and only if it is 0 or it has the
form ℓ1 . . . ℓk0 with k ≥ 1, ℓ1 . . . ℓk avoids the above patterns, and ℓk ⊆ A, i.e. ℓk ∈ {a, b}.
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The generating function of meet-irreducible elements starting with 0 and ending with 0 is
then

M0 = (1 +Ma +Mb)x.

By Fact 5.1, the generating function for all meet-irreducible elements is

M =
M0 +M1

1− x
.

Computing the generating functions. To conclude, we compute the generating func-
tions A,B,C,Di of the sets A, B, C, Di in the next theorem.

Theorem 5.4. Let q = c/d be a positive rational number, with c and d relatively prime.
For 1 ≤ i ≤ d, let ai ∈ {1, . . . , c} be such that ai = d−1(c − d − 1 + i) mod c, and for
0 ≤ m ≤ c− d− 1, let bm ∈ {1, . . . , c} be such that bm = d−1m− 1 mod c. Then

A(x) =

∑d
i=1 x

1+ai+⌊ai
q ⌋

1− xc+d
, B(x) =

∑d
i=1 x

2+ai+⌊ai
q ⌋

1− xc+d
, C(x) =

∑c+1
i=2 x

i+⌊ i
q⌋

1− xc+d
,

and Di(x) =

∑c−1−di
m=0 x1+bm+⌊ bm+1

q ⌋

1− xc+d
for 1 ≤ i ≤ ⌈q⌉ − 1.

Proof. By checking the inequality defining Wq, we have

(5.4) 0a1b ∈ B ⇔ a ≥ 2 +

⌊
b

q

⌋
, and 0a1b ∈ C ⇔ a = 1 +

⌊
b+ 1

q

⌋
.

Furthermore, when q > 1, we have either
⌊
b+1
q

⌋
=
⌊
b
q

⌋
or
⌊
b+1
q

⌋
= 1 +

⌊
b
q

⌋
, and B ⊆ C. To

characterize the factors belonging to A, we need to be careful when
⌊
b
q

⌋
=
⌊
b+1
q

⌋
:

(5.5) 0a1b ∈ A ⇔ a = 1 +

⌊
b

q

⌋
and

⌊
b+ 1

q

⌋
= 1 +

⌊
b

q

⌋
.

Indeed, if a = 1+
⌊
b
q

⌋
= 1+

⌊
b+1
q

⌋
, then 0a1b belongs to C, and not to A. Let us first compute

C: by (5.4) and Proposition 2.7

C(x) =
+∞∑
b=1

x1+b+⌊ b+1
q ⌋ =

+∞∑
b=2

xb+⌊ b
q⌋ =

∑c+1
i=2 x

i+⌊ i
q⌋

1− xc+d
.

By Lemma 2.3, the generating function for all factors 0a1b such that 1+
⌊
b
q

⌋
≤ a ≤ 1+

⌊
b+1
q

⌋
is x2

1−x
. Since B ⊆ C because q > 1, we have by definition A(x) = x2

1−x
− C(x) (below, as a

bonus and a warm up for the Di’s, we compute a closed form of A in another way, using a
little bit of arithmetic). From (5.5) and Fact 2.2, we deduce that

A(x) =
+∞∑
b=1

⌊ b+1
q ⌋=1+⌊ b

q⌋

x1+b+⌊ b
q⌋ =

+∞∑
b=1

db mod c≥c−d

x1+b+⌊ b
q⌋.

Since c and d are relatively prime, d is invertible modulo c, so A can be rewritten

A(x) =
∑
b∈I

x1+b+⌊ b
q⌋,
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where I = {b ≥ 1 | b mod c ∈ {d−1k | k = c− d, c− d+ 1, . . . , c− 1}}.
For 1 ≤ i ≤ d, let ai ∈ {1, . . . , c} be such that ai = d−1(c− d− 1 + i) mod c. Then∑

b∈I

xb =
xa1 + . . .+ xad

1− xc
,

so by Proposition 2.7,

A(x) =

∑d
i=1 x

1+ai+⌊ai
q ⌋

1− xc+d
.

Finally, using (5.4) and
⌊
b+1
q

⌋
∈
{⌊

b
q

⌋
, 1 +

⌊
b
q

⌋}
, we actually have

0a1b ∈ B ⇔
⌊
b+ 1

q

⌋
= 1 +

⌊
b

q

⌋
and a = 2 +

⌊
b

q

⌋
,

so that

B(x) =
+∞∑
b=1

⌊ b+1
q ⌋=1+⌊ b

q⌋

x2+b+⌊ b
q⌋ = x · A(x) =

∑d
i=1 x

2+ai+⌊ai
q ⌋

1− xc+d
.

Now it remains to compute the Di’s. By checking the definition of Wq, we have

0a1b ∈ Di ⇔ a ≥ 1 +

⌊
b+ i+ 1

q

⌋
.

Since 1 +
⌊
b
q

⌋
≤ a ≤ 1 +

⌊
b+1
q

⌋
, we actually have

0a1b ∈ Di ⇔
⌊
b+ i+ 1

q

⌋
=

⌊
b+ 1

q

⌋
and a = 1 +

⌊
b+ 1

q

⌋
.

As a direct generalization of Fact 2.2, we have⌊
b+ i+ 1

q

⌋
=

⌊
b+ 1

q

⌋
⇔ db = m− d mod c, for m ∈ {0, 1, . . . , c− 1− di}

⇔ b = d−1m− 1 mod c, for m ∈ {0, 1, . . . , c− 1− di}.
We deduce that

Di(x) =
∑
b∈Ji

x1+b+⌊ b+1
q ⌋,

where Ji = {b ≥ 1 | b mod c ∈ {d−1m− 1 | m = 0, 1, . . . , c− 1− di}}.
For 0 ≤ m ≤ c− d− 1, let bm ∈ {1, . . . , c} be such that bm = d−1m− 1 mod c. Then for

1 ≤ i ≤ ⌈q⌉ − 1, ∑
b∈Ji

xb =
xb0 + . . .+ xbc−1−di

1− xc
.

Using Proposition 2.7, we finally have

Di(x) =

∑c−1−di
m=0 x1+bm+⌊ bm+1

q ⌋

1− xc+d
.

□
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Example 5.5. Let us describe fully the case q = 5/2. Here ⌈q⌉ = 3, so there are 7 letters
and 14 avoided patterns. From the previous computations, we have

A(x) =
x3 + x6

1− x7
, B(x) =

x4 + x7

1− x7
, C(x) =

x2 + x4 + x5 + x7 + x8

1− x7
,

D1(x) =
x4 + x7 + x8

1− x7
, D2(x) =

x7

1− x7
.

The corresponding generating functions for the letters are then

a = A− x3, b = x3, c = C −D1 − x2, d = B −D2,

e = D2, f = x2, g = D1 −B.

The avoided patterns are cd, ce, dd, de, eb, ed, ee, df, ef, fd, fe, gd, ge, gf, which give
the following system:

Ma = a+ (Ma +Mb +Mc +Md +Me +Mf +Mg) · a
Mb = b+ (Ma +Mb +Mc +Md +Mf +Mg) · b
Mc = c+ (Ma +Mb +Mc +Md +Me +Mf +Mg) · c
Md = d+ (Ma +Mb) · d
Me = e+ (Ma +Mb) · e
Mf = f + (Ma +Mb +Mc +Mf) · f
Mg = g + (Ma +Mb +Mc +Md +Me +Mf +Mg) · g.

Solving it we obtain

M1 = Ma +Mb +Mc +Md +Me +Mf +Mg

=
−D2 (B −D1)x

5 +D2 (B − C + 1)x3 + (AB +D1)x
2 − AB − A− C

D2 (B −D1)x5 −D2 (B − C + 1)x3 + ((1− A)B −D1)x2 + (A− 1)B + A+ C − 1

= − x2 (x2 + 1) (x5 − x4 − x3 + x2 − 1) (x11 + x10 − 2x8 − 2x7 + x5 − x4 + x2 + x+ 1)

x20 − x18 − 2x17 + x15 + x14 + 2x12 + x10 + 2x9 − x8 − 3x7 − x6 − x5 − x3 − x2 + 1
,

M0 = (1 +Ma +Mb)x

=
((B −D1)x

2 −B + C − 1)x

D2 (B −D1)x5 −D2 (B − C + 1)x3 + ((1− A)B −D1)x2 + (A− 1)B + A+ C − 1

= − x (x7 − 1) (x10 − x8 − x7 − x5 − x2 + 1)

x20 − x18 − 2x17 + x15 + x14 + 2x12 + x10 + 2x9 − x8 − 3x7 − x6 − x5 − x3 − x2 + 1
.

Finally, we deduce

M =
M0 +M1

1− x

=
x20 − 2x17 − 2x16 + x14 − 2x13 + 2x12 + 4x9 + x8 − 2x7 + x6 − x5 − x4 − x2 − x

(x− 1) (x20 − x18 − 2x17 + x15 + x14 + 2x12 + x10 + 2x9 − x8 − 3x7 − x6 − x5 − x3 − x2 + 1)

= x+ 2x2 + 3x3 + 6x4 + 9x5 + 13x6 + 23x7 + 34x8 + 52x9 +O
(
x10
)
.
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[8] S. Kirgizov, Q-bonacci words and numbers, Fibonacci Quarterly, 60(5) (2022) 87—195.
[9] D.E. Knuth, The Art of Computer Programming: Sorting and Searching, 2nd edn., Vol. 3. Addison-

Wesley Professional, (1966).
[10] E.P. Miles Jr, Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly, 67 (1960)

745–752.
[11] R.P. Stanley, Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathematics,

(2011).
[12] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2005.
[13] D. Wong, B. Liu, M. Im, Generating Cyclic 2-Gray Codes for Fibonacci q-Decreasing Words, WALCOM:

Algorithms and Computation, Springer, 2024, 91–102.
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