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Abstract

A binary word is called q-decreasing, for q > 0, if inside this word each of
length-maximal (in the local sense) occurrences of a factor of the form 0a1b, a > 0,
satisfies q · a > b. We bijectively link q-decreasing words with certain prefixes of
the cutting sequence of the line y = qx. We show that for any real positive q the
number of q-decreasing words of length n grows as Cq · Φ(q)n for some constant
Cq which depends on q but not on n. From previous works, it is already known
that Φ(1) is the golden ratio, Φ(2) is equal to the tribonacci constant, Φ(k) is
(k + 1)-bonacci constant. We prove that the function Φ(q) is strictly increasing,
discontinuous at every positive rational point, and exhibits a fractal structure related
to the Stern–Brocot tree and Minkowski’s question mark function.

1 Introduction
For any real q > 0, the ray cutting word s(q) is defined as an intersection sequence of a
straight half-line y = qx for x ∈ (0,∞) with the lines of a square grid (y = i or x = i for
i ∈ N+). Going along the half-line, starting from (0, 0), we write 1 if the line intersects a
horizontal edge and 0 in case of a vertical edge (see Figure 1), we write 01 (in this order)
when crossing an intersection point of grid lines.

For any irrational slope q, the word s(q) is aperiodic and Sturmian. In the general
setting, Sturmian words are defined as cutting sequences of the line y = ax + b for
x ∈ (0,∞), irrational a > 0 and real b ∈ [0, 1) or equivalently as binary words having
exactly n+ 1 factors (contiguous subwords) of length n. Sturmian words shine in several
different areas of mathematics: combinatorics, number theory, tilings, discrete dynamical
systems. The structures similar to Sturmian words were already studied by Johann III
Bernoulli [6] in 1771. Expositions of Sturmian words and related results can be found in
Chapter 2 (written by Berestel and Séébold) of Lothaire’s œuvre [17] and in the book
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of Allouche and Shallit [1]. For a rational slope q, the word s(q) is periodic, its shortest
factor f such that s(q) = f · f · f . . ., where · means concatenation, corresponds to the
Christoffel word of slope q [7, 9].
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One paradigmatic example of Sturmian words is the Fibonacci word 010010100100101...
which is characterized by a cutting sequence of the line with a slope 1/φ, where φ =
(1 +

√
5)/

√
2. It can also be obtained either by a recursive simultaneous application

of substitution rules {0 7→ 01, 1 7→ 0} to an initial string 0, or as a limit of recursive
concatenations of strings Sn = Sn−1Sn−2, where S0 = 0 and S1 = 01.

Now consider another Fibonacci object, (or, more generally, k-bonacci), which is an
ensemble of binary words of length n avoiding k consecutive 1s. It seems that this object
appears for the first time in Knuth’s book [16, p. 286]. The set of such words is in bijection
with tilings of stripes of length (n+1)×1 with tiles of size 1×1 (monomers), 2×1 (dimers),
. . . , k × 1 (k-mers), so it is convenient to call them k-bonacci tilings. The cardinality of
the set of such words of length n is equal to nth k-bonacci number (see Feinberg [12] and
Miles [18]), which is obtained by a recurrence relation an = an−1 + an−2 + . . .+ an−k with
initial conditions a0 = a−1 = 1 and aj = 0 for any j < −1.

These two Fibonacci objects belong to two seemingly different worlds. In this paper
we propose a link between these worlds: we show that certain subsets of prefixes of ray
cutting words can be used as building blocks to construct generalized Fibonacci tilings.
To demonstrate this link, we extend the family of q-decreasing words, defined in [5], to
cover all positive real numbers as possible values of the parameter q.

Definition 1. For q ∈ R+, a binary word is called q-decreasing, if inside this word each
of length-maximal occurrences of a factor of the form 0a1b, a > 0, satisfies q · a > b. The
length-maximality of the occurrences should be taken in the local sense: they are not
preceded by a 0 or followed by a 1.

We denote by Wq,n the set of q-decreasing words of length n, Table 1 gives some
examples. It is interesting to note that Eğecioğlu and Iršič [11] independently discovered
and studied hypercube subgraphs associated with a subset of words from W1,n. By
giving a Gray code for W1,n, Baril, Kirgizov and Vajnovszki [5] prove the Eğecioğlu-Iršič
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conjecture [11] about the existence of a Hamiltonian path in such hypercube subgraphs.
Recently, Wong, Liu, Lam and Im [24] found a 2-Gray code (where consecutive words
differs in at most 2 positions) for Wq,n for any real positive q. The question whether there
exists a 1-Gray code when q is a natural number greater than 1 remains open.

In the paper [5] it has been shown that q-decreasing words, for q ∈ N+, are in bijection
with k-bonacci tilings, where k = q + 1, i.e. with the set of n-length binary words that
avoid q+1 consecutive 1s. Baril, Kirgizov and Vajnovszki are also proved that Φ(1) is the
golden ratio, Φ(2) is equal to the tribonacci constant, Φ(k) is (k + 1)-bonacci constant.
Intriguing bijective and enumerative connections between certain subsets of Dyck paths,
integer compositions and q-decreasing words are studied by Barcucci, Bernini, Bilotta and
Pinzani [3, 4].

In Section 2 we decompose q-decreasing words into sequences of words corresponding to
ray cutting prefixes ending on 1. The number Φ(q), called the exponential growth constant,
is defined as the limit ratio of successive cardinalities Φ(q) = limn→∞ |Wq,n+1|/|Wq,n|. In
Sections 3 and 4 we show that this limit exists, and explore the structure of Φ(q) as a
function of q. It turns out that the function Φ(q) is bounded, discontinuous at every
positive rational point, strictly increasing over (0,∞), and also exhibits a nice fractal
structure, shown in Figure 2, which bears visual resemblance to fractals arising from
information-theoretical applications such as the (appropriately rescaled) number of coin
tossings required to obtain a discrete uniform distribution on [1, n] as n goes to infinity
(see a work [2, Fig. 6, right] by Bacher, Bodini, Hwang and Tsai). A characteristic trait
of such fractals is that they demonstrate a sort of self-similarity, which is still quite tricky
to explain, as the aforementioned similarity is only approximate. We also show that at
the vicinity of each rational point q, Φ(q) converges locally to a piecewise linear function.

Figure 2: limn→∞ |Wq,n+1|/|Wq,n| as a function of q in three different intervals. This
function is jump discontinuous at every positive rational point.

2 Construction from ray cutting prefixes
Here we express q-decreasing words as sequences of ray cutting prefixes ending on 1. It
is handy to use the Kleene star operator (it corresponds to SEQ operator in the Flajolet–
Sedgewick book [13]), which constructs a disjoint union of finite concatenations from
strings of a given family. For instance, ({0, 10})∗ provides all binary strings which are
empty or end on 0 and do not contain two consecutive 1s. We also use the “·” symbol to
denote all possible pairwise concatenations between the elements of two families.
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n 1 2 3 4 5

W
√
2

n
0
1

00
01
10
11

000
001
010
100
101
110
111

0000
0001
0010
0011
0100
0101
1000
1001
1010
1100
1101
1110
1111

00000
00001 10010
00010 10011
00011 10100
00100 10101
00101 11000
00110 11001
01000 11010
01001 11100
01010 11101
10000 11110
10001 11111

|W
√
2

n | 2 4 7 13 23

n 1 2 3 4 5

W2/3
n

0
1

00
10
11

000
001
100
110
111

0000
0001
0010
1000
1001
1100
1110
1111

00000
00001
00010
00100
10000
10001
10010
11000
11001
11100
11110
11111

|W2/3
n | 2 3 5 8 12

Table 1: q-decreasing words for n ∈ [1, 5] and q ∈ {
√
2, 2

3
}

Proposition 1. For q ∈ R+, the set Wq of q-decreasing words can be represented as

Wq = ({1})∗ · (Sq)
∗, where Sq = ∪∞

i=0{01+⌊i/q⌋1i}.

Proof. By definition 1, a q-decreasing word is a concatenation of factors 0a1b satisfying
a = 0 or qa > b. If a = 0, the string starts with an arbitrary sequence of 1s, which is
({1})∗, otherwise the condition qa > b can be rewritten as a ⩾ 1 + ⌊b/q⌋. By grouping
the extra zeros at the beginning of each factor 0a1b, we write it as 0t01+⌊i/q⌋1i with i = b
and t = b− a. Furthermore, since 0 ∈ Sq, the factor 0t belongs to the family (Sq)

∗, and
the remaining part 01+⌊i/q⌋1i belongs to Sq itself. This procedure allows us to decompose
the remainder into a sequence of strings from Sq, which finishes the proof.

For a binary word α containing n 0s and m 1s, we define a transformation κ(α) =
0n+11m, so that the empty word ϵ is mapped to the word 0. We provide a decomposition
of q-decreasing words into partitions of certain ray cutting prefixes by using the above
transformation.

Proposition 2. For q ∈ R+, the transformation κ bijectively maps the set of prefixes
ending with 1 of the ray cutting word s(q) to the set Sq, which is used in the construction
of q-decreasing words.

Proof. Take a ray cutting word s(q) = s1s2s3s4 . . . where every si is a binary digit. The
index of ith 1 in this word is i+

⌊
i
q

⌋
. The prefix s1s2 . . . si+⌊i/q⌋ of s(q) contains exactly i

1s and
⌊

i
q

⌋
0s. The word κ(s1s2 . . . si+⌊i/q⌋) = 00⌊ i

q⌋1i is a factor from the set Sq, which
completes the proof.

See Tables 2 and 3 for examples.
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q Ray cutting word Factors from Sq
Some q-decreasing

words

√
2 101011010110. . .

κ(ϵ) = 0,
κ(1) = 01,
κ(101) = 0011,
κ(10101) = 000111, ...

111100011000111,
000111101000001,
100000101000001

2
3 010010100101. . .

κ(ϵ) = 0,
κ(01) = 001,
κ(01001) = 000011,
κ(0100101) = 00000111, ...

111100001100001,
000011001000001,
001000000001111

Table 2: Illustration of the transformation κ. Prefixes ending with 1 of the ray cutting
word s(q) correspond to factors from the set Sq.

q Ray cutting word Counting Sequence |Wq,n| OEIS
1
2

0010010010010010... 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, ... Narayana’s
cows, A930

1/φ
0100101001001010...

Fibonacci word 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, 286, 448, ... NEW

2
3

0100101001010010... 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, 286, 449, ... Comp. into
1s, 3s and
5s, A60961

1 0101010101010101... 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ... Fibonacci,
A45

2 1011011011011011... 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, ... Tribonacci,
A73

3
2

1010110101101011... 1, 2, 4, 7, 13, 23, 42, 76, 138, 250, 453, 821, 1488, 2697, ... NEW
√
2 1010110101101010... 1, 2, 4, 7, 13, 23, 42, 76, 138, 250, 453, 821, 1488, 2697, ... NEW

φ 1011010110110101... 1, 2, 4, 7, 13, 24, 44, 81, 148, 272, 499, 916, 1681, 3085, ... NEW

e 1101110111011011... 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, ... NEW

π 1110111011101110... 1, 2, 4, 8, 16, 31, 61, 120, 236, 463, 910, 1788, 3513, 6901, ... NEW

Table 3: Examples of ray cutting words and corresponding counting sequences for the
cardinalities of q-decreasing words.

3 Rational discontinuity

In this section we study the function Φ(q) = limn→∞
|Wq,n+1|
|Wq,n| , whose graph is shown on

Figure 2. Using the previously mentioned SEQ operator, Proposition 1 yields the generating
function Wq(x) =

∑∞
n=0 |Wq,n|xn of the family Sq for any q ∈ R+:

Wq(x) =
1

(1− x)
(
1−∑∞

i=0 x
1+i+⌊ i

q⌋
) . (1)

The case where q is a positive rational number represented by an irreducible fraction c
d

is
treated in [15] where the author expresses the generating function Wq(x) as

Wq= c
d
(x) =

1− xc+d

(1− x)
(
1− xc+d −∑c−1

i=0 x
1+i+⌊ i

q⌋
) . (2)
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In other words, Equation (1) holds for any positive real q, and is more general, although
simpler, form of Equation (2) which is only valid for q ∈ Q+.

To prove the results about the asymptotic behaviour of coefficients [xn]Wq(x), we need
the following lemma, which can be considered as a simpler variant of Daffodil Lemma
from Flajolet–Sedgewick book [13, Lemma IV.1, p. 266].

Lemma 1 (“Little Narcissus Lemma”). Let f(x) = x+
∑∞

k=2 akx
k be a power series with

non-negative real coefficients {ak}∞k=2 and a positive radius of convergence ρ. The following
hold:

1) there is a unique real root R of the equation f(x) = 1;
2) R has the multiplicity one;
3) there is no other root x ∈ C, x ̸= R of the equation f(x) = 1 such that |x| ⩽ R.

Proof. Suppose that at least one of the coefficients {ak}∞k=2 is strictly positive, otherwise
the result is trivially simple. The function f(x) is monotonically increasing on [0, ρ). We
have f(0) = 0, limx→ρ f(x) = +∞. So, there is a unique real value R ∈ [0, ρ) such that
f(R) = 1. The multiplicity of R is one because f ′(R) > 0. For any z such that |z| < R,
we have, by the triangle inequality, |f(z)| ⩽ f(|z|) < f(R) = 1. Consider the case |z| = R.
Again, by the triangle inequality we have |∑∞

i=2 akx
k| ⩽∑∞

i=2 akR
k. If z ≠ R, we have a

strict inequality |z +∑∞
i=2 akx

k| < R +
∑∞

i=2 akR
k, see Figure 3.

R Re

Im

∑∞
i=2 akR

k

z

|
∑∞

i=2 akz
k| ≤

∑∞
i=2 akR

k by triangle inequality∑∞
i=2 akz

k

1

|z| = R

|z +
∑∞

i=2 akz
k| < R+

∑∞
i=2 akR

k if z is not codirectional with R

Figure 3: An element of the Little Narcissus Lemma proof.

We have the following result about the asymptotic behaviour of [zn]Wq(x).

Proposition 3. The number of q-decreasing words of length n grows as Cq · Φ(q)n, where
1/Φ(q) is the unique smallest in modulus root of 1−∑∞

i=0 x
1+i+⌊ i

q⌋, and

Cq = − Φ(q)(
(1− x)

(
1−∑∞

i=0 x
1+i+⌊ i

q⌋
))′ (

1/Φ(q)
) .

Proof. Let fq(x) =
∑∞

i=0 x
1+i+⌊ i

q⌋ = x + x2+⌊ 1
q⌋ + . . .. For any x ∈ [0, 1) we have∑∞

i=0 x
1+i+⌊ i

q⌋ ⩽
∑∞

i=1 x
i ⩽ x

1−x
. So, fq(x) evaluated at x ∈ [0, 1) is bounded, thus
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convergent for any real q ∈ (0,∞). Apply Little Narcissus Lemma to see that fq(x) = 1
have a unique smallest in modulus root R < 1 which has the multiplicity 1. Let gq(x) =

(1− x)
(
1−∑∞

i=0 x
1+i+⌊ i

q⌋
)
. The function Wq(x) = 1/gq(x) is meromorphic in the unit

disc. The root ρq of fq(x) = 1 is the unique smallest in modulus pole of Wq(x). The
pole have the multiplicity 1. Let Φ(q) = 1/ρq. Using classical asymptotic analysis of
meromorphic functions (see Flajolet–Sedgewick book [13], Sedgewick’s online course [22]
or Orlov’s paper [20]) we obtain the result, expressing Cq as Φ(q)/g′(1/Φ(q)).

The equation 1−∑∞
i=0 x

1+i+⌊ i
q⌋ shares the smallest in modulus root with

Aq := 1−
∞∑
i=1

∞∑
j=0

x1+i+⌊ i
q⌋+j,

the fact that has a nice geometrical interpretation. To see it, we have to decompose the
set Wq in another way, different from what was given in Section 2. Here we use a set Fq

of factors 0a1b such that qa > b and b ⩾ 1. With this, we decompose any word w ∈ Wq as
a sequence of 1s, followed by a sequence of factors from Fq, followed by a sequence of 0s.
Any of these sequences can be empty. We have

w =

some ones︷︸︸︷
1...1

fℓ∈Fq︷ ︸︸ ︷
f1f2....fk

some zeros︷︸︸︷
0...0 , where Fq =

⋃∞
i=1

⋃∞
j=0{

1+⌊ i
q⌋+j zeros︷ ︸︸ ︷
0 . . . 00 1 . . . 11︸ ︷︷ ︸

i ones

}.

Now, we write the g.f. Wq(x) as

Wq(x) =
1

1− x
· 1

Aq

· 1

1− x
.

Consider the grid Z+ × Z+, and make every point (a, b) correspond to a factor 0a1b. The
power series Aq sums over all points with positive integer coordinates found under the
line b = qa. Figure 4 gives some examples.

1 2 3 4 5

1

2

3

4

5

6

7

8

a

b

factor 0001, term x4 in A2/3, and also in A2/3−δ

factor 000011, term x6 in A2/3, but not in A2/3−δ

b = 2
3a

b =
(
2
3 + δ

)
a

b =
(
2
3 − δ

)
a

factor 00011, term x5 in A2/3+δ, but not in A2/3

factor 0000001111, term x10 in A2/3+δ, but not in A2/3

factor 000001111, term x9 in A2/3+δ, but not in A2/3

Figure 4: The line b = 2
3
a and the geometrical interpretation of factors 0a1b where 2

3
a > b.
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From Proposition 3 we see that the function Φ(q) is well-defined as limn→∞
|Wq,n+1|
|Wq,n| .

In Proposition 4 we prove the basic properties of this strictly increasing and bounded
function with a countable number of discontinuities, and then calculate the the jump sizes
in Proposition 5.

Proposition 4. The function Φ(q) = limn→∞
|Wq,n+1|
|Wq,n| is

a) strictly increasing over q ∈ [0,∞);
b) bounded, 1 ⩽ Φ(q) < 2, with Φ(0) = 1 and limq→∞Φ(q) = 2;
c) left-continuous (and right-discontinuous) at every positive rational point;
d) continuous at every positive irrational point.

Proof. Let δ > 0.
a) Note that Aq+δ = 1 −∑∞

i=1

∑∞
j=0 x

1+i+⌊ i
q+δ⌋+j contains all terms of Aq = 1 −∑∞

i=1

∑∞
j=0 x

1+i+⌊ i
q⌋+j together with terms not presented in Aq. This can be seen geomet-

rically on Figure 4. The terms corresponding to points of positive integer coordinates,
lying at the line b = qa, are included in Aq+δ for any δ > 0, but none of these terms are
in Aq. So, we necessarily have ρq+δ < ρq, and thus Φ(q) < Φ(q + δ).

b) If q = 0, the only q-decreasing word of length n is 1n, so Φ(0) = 1. It is
straightforward that limq→0Φ(q) = 1. As q → ∞ we allow more and more binary words,
and the functional limit of Aq can be expressed as 1 minus the sum over all integer points
from the positive quadrant: limq→∞ Aq(x) = 1−∑∞

i=1

∑∞
j=1 x

i+j, so limq→∞ Φ(q) = 2.
c) For a positive rational q represented by an irreducible fraction c

d
the line b = qa

contains points of integer coordinates (kd, kc) for k ∈ [1,∞). For any δ > 0, these points
are below the line b = (q+δ)a. The corresponding terms of the form xkd+kc are included in
Aq+δ but not in Aq. This, in turn, influences the smallest in modulus root of Aq+δ which is
strictly less than the smallest in modulus root of Aq and we obtain Φ(q) < limδ→0+ Φ(q+δ).
The difference between limδ→0+ and Φ(q) is explicitly calculated in Proposition 5. In other
case, no line of the form b = (q − δ)a can have the points (kd, kc) below it (even if δ = 0).
Any point lying under b = qa also lies under b = (q − δ)a for sufficiently small δ. We
obtain limδ→0+ Φ(q − δ) = Φ(q).

d) For a positive irrational q, the line b = qa contains no points of positive integer
coordinates. There are therefore no terms included in Aq corresponding to this line. So,
the smallest root ρq of Aq can be approached by smallest roots of {Ari}∞i=1 where {ri}∞i=1

is a sequence of rational numbers such that limi→∞ ri = q.

Assume that q ∈ Q+ is represented by an irreducible fraction c/d. From Equation (2)
we see that the growth rate is dictated by the smallest in modulus root ρq, of the polynomial

Πq := 1− xc+d −
c−1∑
i=0

x1+i+⌊ i
q⌋.

Comparing Equations (1) and (2) we see that Πq shares the same smallest in modulus
root with

1−
∞∑
i=0

x1+i+⌊ i
q⌋.

Lemma 2. The smallest in modulus root ρq of Πq is positive and real.
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Proof. By Little Narcissus Lemma 1.

Proposition 5. For any irreducible q = c
d
∈ Q+, limδ→0+ Φ(q + δ) equals the reciprocal

of the smallest in modulus root, denoted by ρ+q , of the polynomial

Π+
q := 1− (2− x)xc+d −

c−1∑
i=0

x1+i+⌊ i
q⌋.

We have
lim
δ→0+

Φ(q + δ)− Φ(q) =
1

ρ+q
− 1

ρq
,

where ρq is the smallest in modulus root of Πq := 1− xc+d −∑c−1
i=0 x

1+i+⌊ i
q⌋.

Proof. Assume that q is represented by an irreducible fraction c/d. We consider a set of
binary words W+

q,n where every length-maximal (in the local sense) occurrence of a factor
of the form 0a1b respects aq ⩾ b. It differs from the definition of q-decreasing words which
encloses a strict inequality. It is clear (see e.g. Figure 4) that the set Wq+δ,n approaches
W+

q,n as δ → 0, factors 0kd1kc corresponding to the points of the form (kd, kc) are included
in both sets, no points located strictly above the line b = qa are considered in both cases.
The set W+

q is constructed as W+
q = ({1})∗ · (S+

q )
∗, where S+

q = {0} ∪⋃∞
i=1{0⌈i/q⌉1i} (c.f.

Proposition 1).
Note that S+

q = {0}∪B, where B = B0∪B1∪B2∪..., and B0 =
⋃c−1

i=1{01+⌊i/q⌋1i}∪{0d1c},
and Bj+1 is constructed by inserting the factor 0d1c after the last 0 in words from Bj . So,
the g.f. W+

q (x) of the words in W+
q is

W+
q= c

d
(x) =

1

(1− x)

(
1−

(
x+

∑c−1
i=1 x

1+i+⌊ i
q⌋+xc+d

1−xc+d

)) =

=
1− xc+d

(1− x)
(
1 + xc+d+1 − 2xc+d −∑c−1

i=0 x
1+i+⌊ i

q⌋
) =

1− xc+d

(1− x) · Π+
q

.

Consider fq(x) = x+
∑c−1

i=1 x
1+i+⌊ i

q⌋+xc+d

1−xc+d , from Little Narcissus Lemma 1 it follows that
there are no complex roots of the equation fq(x) = 1 smaller than or equal in modulus
to ρ+q that lies in [0, 1). The claimed result is obtained by comparing this formula with
Equation (2).

4 The fractal
As we can see on Figure 2 the graph of the function Φ(q) shows a certain amount of
self-similarity. We explain some aspects of this fractality in this section. Firstly, we zoom
into the intervals q ∈ ( k

k+1
, 1] for k ∈ [1,∞), and then look into a more general setting

using a rescaling based on Minkowski’s question mark function and the Stern–Brocot tree.
We use this tree to generate a sequence of nested intervals, narrower each time, around a
given rational number. The summary of results and one open question are presented at
the end of this section.
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4.1 Around the point q = 1

Let us recall that the smallest in modulus root of 1 − x − x2 is ρ1 = 1/φ, where
φ = (1 +

√
5)/2. The polynomials Πq and Π+

q are defined in Proposition 5.

Proposition 6. For natural k ⩾ 1, the smallest in modulus root ρk/(k+1) of Πk/(k+1) is

ρ1 + Cρ2k1 (1 + o(1)), as k → ∞,

where C = ρ31/(1 + 2ρ1), and ρ1 is the smallest in modulus root of 1− x− x2.

Proof. After arithmetic transformations, the equation Πk/(k+1) = 0, i.e. the equation

1− x2k+1 −
k−1∑
i=0

x1+i+⌊ i(k+1)
k ⌋ = 0

turns into

1− x2k+1 −
k−1∑
i=0

x1+2i = 0 ⇔ 1 = x · x
2k+2 − 1

x2 − 1
⇒ 1 = x+ x2 − x2k+3.

We multiplied by (x2−1) both sides of equation, adding two new roots 1 and −1. This does
not change the overall picture of the asymptotics, because 0 < ρk/(k+1) < 1. By Lemma 2
there is no complex roots smaller than or equal in modulus to ρk/(k+1). The root can be
represented as ρk/(k+1) = ρ1 + εk for some positive εk such that 0 < ρ1 + εk < 1. Note
that εk → 0 as k grows. Next, we substitute ρ1 + εk for x in x + x2 − 1 = x2k+3, use
1 = ρ1 + ρ21 and obtain the following:

ρ1 + εk + (ρ1 + εk)
2 − 1 = (ρ1 + εk)

2k+3,

ρ1 + εk + ρ21 + 2ρ1εk + ε2k − 1 = ρ2k+3
1 (1 + o(1)),

εk(1 + 2ρ1 + εk) = ρ2k+3
1 (1 + o(1)).

The claimed result ρk/(k+1) = ρ1 + Cρ2k1 (1 + o(1)) follows, because 1 + 2ρ1 + εk → 1 + 2ρ1
as k → ∞.

Using the Taylor expansion several times one can improve the root approximation
and get ρk/(k+1) = ρ1 + Cρ2k1 + O(kρ4k1 ). But in context of this paper, Proposition 6 is
sufficient.

Proposition 7. For natural k ⩾ 2, the smallest in modulus root ρ+(k−1)/k of Π+
(k−1)/k is

ρ1 + Cρ2k1 (1 + o(1)),

where C = ρ31/(1 + 2ρ1), and ρ1 is the smallest in modulus root of 1− x− x2.

Proof. After arithmetic transformations similar to the ones in Proposition 6, the equation
Π+

(k−1)/k = 0, i.e. the equation

1− x2k−1 −
k−2∑
i=0

x1+i+⌊ ik
k−1⌋ − x2k−1 + x2k = 0

10



turns into
x+ x2 − 1 = x2(k−1)(2x3 − x− x4 + x2).

Note that, at some point, we multiply both sides of equation by (1− x2), adding −1 and
1 as roots. This does not change the picture dramatically, because 0 < ρ+(k−1)/k < 1.

As in the proof of Proposition 6 the root is ρ1 + εk, εk → 0 when k → ∞. Note that
2x3 − x − x4 + x2 − x5 = (x3 − x)(1 − x − x2), so we have 2ρ31 − ρ1 − ρ41 + ρ21 = ρ51, so
2(ρ1 + εk)

3 − (ρ1 + εk)− (ρ1 + εk)
4 + (ρ1 + εk)

2 = ρ51(1 + o(1)). Using the techniques from
the previous proof we obtain the claimed result.
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Figure 5: Fractal structure of the function Φ(q) = limn→∞
|Wq,n+1|
|Wq,n| , before and after

rescaling on the intervals (k−1
k
, 1].

4.2 Minkowski rescaling and Stern–Brocot tree

Note that Propositions 6 and 7 already provide some insights into the fractal structure
of Φ(q) displayed in Figure 5. On the left side of this figure, the horizontal axis is
partitioned into intervals (1/2, 2/3], (2/3, 3/4], . . ., and the parts of the plot of Φ(·) are
grouped accordingly. In particular, we showed that

lim
k→∞

Φ(1)− limδ→0+ Φ(k−1
k

+ δ)

Φ(1)− Φ( k
k+1

)
= 1,

i.e. that the images of the intervals (k−1
k
, k
k+1

] tend to straighten as k → ∞.
To better observe the self-similarity, the intervals q ∈ (k/(k + 1), 1] and their images

under Φ(·) can be “normalized” using simple rescaling and Minkowski’s question-mark
function [10, 19]. Simple rescaling takes a set of positive values V , containing at least
2 values, and maps every v ∈ V to v−minV

maxV−minV
, so the image lies in [0, 1]. Minkowski’s

question-mark function is a little trickier, and we must first discuss mediants and the
construction of the Stern–Brocot tree [8, 23].

For two irreducible fractions a/b and c/d their mediant is defined as (a+ c)/(b+ d).
The root of the Stern–Brocot tree is 1/1, which is the mediant of two conventionally
irreducible fractions 1/0 and 0/1. To determine the left (resp. right) child of a node
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x/y of the level i we need to find the greatest (resp. smallest) fraction x′/y′ < x/y (resp.
x′/y′ > x/y) that appears in set of values of first i levels together with 1/0 and 0/1, and
compute the mediant (x + x′)/(y + y′). For instance, the left child of 2/3 is 3/5, it is
calculated as the mediant of 1/2 and 2/3. Figure 6 illustrates this process. Stern–Brocot
tree contains all rationals once.
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Figure 6: The Stern–Brocot tree and Minkowski’s ?(x).

Minkowski’s question-mark function, denoted by ?(x), maps a positive rational value
x to a positive dyadic rational a/2k with a, k ∈ N. By definition, ?(0) = 0 and ?(1) = 1.
Whenever x ∈ (0, 1) is a rational number represented by an irreducible fraction a/b, such
that in the Stern–Brocot tree it is constructed via taking a mediant of two fractions p/r
and p′/r′, its image under Minkowski’s function is defined as

? (x) = ?

(
p+ p′

r + r′

)
:=

1

2

(
?
(p
r

)
+ ?

(
p′

r′

))
.

In other words, we descend the Stern–Brocot tree in search of the a/b, and “in parallel”
construct a resulting value by applying the mean instead of the mediant. For x > 1,
Minkowski’s function is defined as ?(x+ 1) =?(x) + 1. In general, ?(x) is monotonically
increasing, and can be defined on all R+ [10].

The right side of Figure 5 is obtained by applying the simple rescaling on the vertical
axis and Minkowski’s question-mark function followed by the simple rescaling on the
horizontal axis for intervals (k/(k + 1), 1] and their images. The similar analysis can be
done for intervals (1, (k + 1)/k]. The fractal structure of Φ presented in Figure 2 appears
more regular in Figure 7 as we apply Minkowski’s question-mark function over the x-axis.

4.3 Around a positive rational number q

Now, we study the more general case, that is the fractal structure of Φ(q) on the intervals(
p+ck
r+dk

, c
d

]
for k ⩾ 1, where fractions are irreducible, and p+c

r+d
is the left child of c/d in the

Stern–Brocot tree. For example the intervals
(
3+5k
2+3k

, 5
3

]
, where 8/5 is the left child of 5/3.

Proposition 8. For natural k ⩾ 1, the smallest in modulus root of Π p+ck
r+dk

is

ρ p+ck
r+dk

= ρc/d + Cρ
(c+d)k
c/d

(
1 + o(1)

)
,
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Figure 7: Φ(q) := limn→∞ |Wq,n+1|/|Wq,n| as a function of ?(q).

where k ⩾ 1, p+c
r+d

is the left child of c/d in the Stern–Brocot tree, C is a constant depending
only on p/r and c/d, and ρc/d is the smallest in modulus root of Πc/d.

Proof. Recall that from Proposition 5 we have

Π p+ck
r+dk

:= 1− xp+r+(c+d)k −
p+ck−1∑

i=0

x1+i+⌊ i(r+dk)
p+ck ⌋. (3)

For 0 < i < p+ ck, 1 + i+
⌊
i(r+dk)
p+ck

⌋
equals the number of integer points with coordinates

(i, y) lying between two diagonal lines intersecting at the origin with respective slopes
(−c) and r+dk

p+ck
, see Figure 8 for an illustration.

Note that from the construction of Stern–Brocot tree, p
r
< c

d
. From the mediant

inequality it follows that p
r
< p+ck

r+dk
< c

d
, for any integer k > 0. Next, let us show that

there are no integer points with horizontal coordinate equal i, 0 < i < p+ ck, lying strictly
between the lines with slopes r+dk

p+ck
and d

c
. Consider the triangle ABC with following

integer coordinates:
A = (0, 0);

B = (c(k + 1), d(k + 1));

C = (p+ ck, r + dk).

The area of ABC is

1

2

∣∣∣∣∣c(k + 1) p+ ck

d(k + 1) r + dk

∣∣∣∣∣ = 1

2
(k + 1)

∣∣∣∣∣c p

d r

∣∣∣∣∣ = k + 1

2
(cr − dp) =

k + 1

2
,

because p
r
< c

d
and (cr − dp) = 1 by a joli property of the Stern–Brocot tree (see [14]).

Pick’s Theorem [21] implies that the area of triangle ABC is equal to I +B/2− 1, where
I is the number of its interior points and exactly B points lie on the boundary. We have
B = k + 3, because p+ck

r+dk
and c

d
are irreducible fractions. We conclude that I = 0 and

there are no interior points inside ABC. This fact can be used to simplify Π p+ck
r+dk

from
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Π2/3

Π5/3

Π8/5 := 1−x− x2 − x4 − x5−
−x7 − x9 − x10 − x12 − x13

Π13/8 := 1−x− x2 − x4 − x5−
−x7 − x9 − x10 − x12 − x13−
−x15 − x17 − x18 − x20 − x21

Π8/5

Π13/8

Π18/11 := 1−x− x2 − x4 − x5−
−x7 − x9 − x10 − x12 − x13−
−x15 − x17 − x18 − x20 − x21−
−x23 − x25 − x26 − x28 − x29

Π(3+5k)/(2+3k) := 1−x− x2 − x4 − x5−
−
∑k−1

i=0 (x
7 + x9 + x10 + x12 + x13)x8i

Π5/3 := 1− x− x2 − x4 − x5 − x7 − x8

Π3/2 := 1− x− x2 − x4 − x5

ρ(3+5k)/(2+3k) = ρ5/3 + C(ρ8k5/3 + o(1))

c

d
=

5

3
;

p

r
=

3

2

8

5
=

3 + 5k

2 + 3k
, k = 1

13

8
=

3 + 5k

2 + 3k
, k = 2

{

{
{

{
c

d

{

{
c

d

p

r

Figure 8: Geometric representation of polynomials Π5/3,Π3/2 and Π(3+5k)/(2+3k) for some
values of k ⩾ 1.

Equation (3) by considering only points lying on or below the line of slope d/c and on or
above the line of slope (−c). Taking this into account, we rewrite the equation Π p+ck

r+dk
= 0,

i.e. the equation

1− xp+r+(c+d)k −
p+ck−1∑

i=0

x1+i+⌊ i(r+dk)
p+ck ⌋ = 0

by decomposing the internal sum representing the sum over all points in a triangle
(see Figure 8) by the sum over corresponding triangles and rectangles, which then allows

14



us to simplify the sum by using the summation formula for geometric progressions:

1−
p∑

j=0

x1+j+⌊ jd
c ⌋ −

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋

k−1∑
i=0

x(c+d)i = 0, (4)

1−
p∑

j=0

x1+j+⌊ jd
c ⌋ −

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋1− x(c+d)k

1− xc+d
= 0,

1−
p∑

j=0

x1+j+⌊ jd
c ⌋ − xc+d + xc+d

p∑
j=0

x1+j+⌊ jd
c ⌋ −

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ + x(c+d)k

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ = 0,

1− xc+d −
p+c∑
j=0

x1+j+⌊ jd
c ⌋ +

p+c∑
j=c

x1+j+d+⌊ (j−c)d
c ⌋ + x(c+d)k

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ = 0,

1− xc+d −
c−1∑
j=0

x1+j+⌊ jd
c ⌋ + x(c+d)k

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ = 0. (5)

At some point, we multiply both sides by (1− xc+d). All roots of Equation (4) are also
the roots of Equation (5), but the latter is additionally satisfied by the roots of unity
1 = xc+d, the modulus of which is greater than ρ p+ck

r+dk
.

Finally, since the first three terms of the sum are equal to Πc/d(x), we conclude that
for x = ρ p+ck

r+dk
we have

− Πc/d(x) = x(c+d)k

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋.

Using the same method as in the proof of Proposition 6 and denoting by Π′
c/d the derivative

of Πc/d we obtain
ρ p+ck

r+dk
= ρc/d + Cρ

(c+d)k
c/d

(
1 + o(1)

)
,

where

C =

∑p+c
j=p+1 ρ

1+j+⌊ jd
c ⌋

c/d

−Π′
c/d

(
ρc/d
) .

Proposition 9. For natural k ⩾ 2, the smallest in modulus root ρ+p+c(k−1)
r+d(k−1)

of Π+
p+c(k−1)
r+d(k−1)

is

ρ p+ck
r+dk

= ρc/d + Cρ
(c+d)k
c/d

(
1 + o(1)

)
,

where k ⩾ 1, p+c
r+d

is the left child of c/d in the Stern–Brocot tree, C is the same constant
as in Proposition 8 not depending on k, and ρc/d is the smallest in modulus root of Πc/d.

Proof. Recall that Proposition 5 defines Π+
a/b := Πa/b − xa+b + xa+b+1. Having this in

mind and adapting the equations from the proof of Proposition 8 by writing k− 1 in place
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of k we obtain:

1− xc+d −
c−1∑
j=0

x1+j+⌊ jd
c ⌋ + x(c+d)(k−1)

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋−

−xp+r+(c+d)(k−1)(1− xc+d) + xp+r+(c+d)(k−1)+1(1− xc+d) = 0,

1− xc+d −
c−1∑
j=0

x1+j+⌊ jd
c ⌋ + x(c+d)(k−1)×

×
(

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ − xp+r + xp+r+(c+d) + xp+r+1 − xp+r+(c+d)+1

)
= 0.

(6)

Now, using the fact that cr − dp = 1 and a kind of geometrical argument (as in the
previous proof), it can be shown that

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ − xp+r + xp+r+(c+d) + xp+r+1 − xp+r+(c+d)+1 − x(c+d)

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ =

=

(
1− xc+d −

c−1∑
j=0

x1+j+⌊ jd
c ⌋
)(

xc+d+p+r − xp+r
)
.

Adapting the techniques from the proofs of Propositions 6 and 7 we see that the smallest
in modulus root of (6) is equal to the smallest in modulus root of

1− xc+d −
c−1∑
j=0

x1+j+⌊ jd
c ⌋ + x(c+d)(k−1)

(
x(c+d)

p+c∑
j=p+1

x1+j+⌊ jd
c ⌋ + o(1)

)
= 0,

where o(1) is considered as k → ∞. Comparing it to Equation (5) from the proof of
Proposition 8, we see that the claimed result follows.

4.4 Summary of fractal results and an open question

To summarize the results of the previous two propositions, let q denote c
d

and let q∗k denote
p+ck
r+dk

, i.e. the kth left approximation of q in the Stern–Brocot tree. From Propositions 8
and 9 the following result follows.

Proposition 10. The graph of the function Φ(q) rescaled on the intervals (q∗k, q] tends to
a constant function on the semi-open intervals (q∗k−1, q

∗
k]:

lim
k→∞

Φ(q)− limδ→0+ Φ(q∗k−1 + δ)

Φ(q)− Φ(q∗k)
= 1.

The ratio between consecutive constants on the rescaled graph tends to ρc+d
q :

lim
k→∞

Φ(q)− Φ(qk)

Φ(q)− Φ(qk−1)
= ρc+d

q .
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Using a similar technique, it is possible to demonstrate an identical picture using the
right child of 1 in the Stern–Brocot tree, generating intervals of the form [1, k+1

k
), and,

more generally, using the right approximation of any rational point q = c/d.

From Proposition 5 it follows that the function Φ(q) has the highest jump at point
q = 1, the second highest jump is at q = 1/2, the third highest jump appears when q = 2,
see Figure 2. The sequence of positive rational numbers ordered by corresponding jumps
of the function Φ(q) = limn→∞ |Wq,n+1|/|Wq,n| starts with

1,
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1

3
,
1

4
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,
1
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1
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,
5

2
,
1

17
, ...

Question: Is it possible to explain this sequence without polynomial root calculations?

Acknowledgments
Sergey Dovgal was supported by the EIPHI Graduate School (contract ANR-17-EURE-
0002), FEDER Région Bourgogne Franche-Comté, and Sergey Kirgizov was supported in
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