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1. Classical community dynamics
2. Our method3. Illustrations of our methodSchool contacts networkTwitter temporal network



Classical detection/visualisation of dynamic community structures
Snapshots based detection/visualisation.

Time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

This visualisation is not suitable for large graphs or large number
snapshots
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Another method of visualisation
Lines corresponds to nodes, colors to different communities.

Time−−−−−−−−−−−−−−−−−−−−−−→

A visualisation from Intrinsically Dynamic Network Communitiesby Mitra, Tabourier, Roth 20113



Another method of visualisation
Lines corresponds to nodes, colors to different communities.

Time−−−−−−−−−−−−−−−−−−−−−−→

Usually, real networks changes more smoothly...
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The ultimate goal is hard

Detect communities in dynamicnetworks and visualise theirevolution!
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The ultimate goal is hard

It is not so easy todetect communities in dynamicnetworks and visualise theirevolution
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In this talk

Instead we considerego-community evolution.
5



Ego-community structure
Node u is a centre ofthe ego-community.
Function pu : V → [0, 1]assigns a probabilityfor a node v be in thecommunity of node u.
Red color means largeprobability, blue meanssmall.
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Algorithms
Many algorithms can provide such community structure

1 Eigenvector centrality
2 Personalised pagerank
3 Shi–Malik’s normalised relaxed mincut
4 Pons–Latapy’s Walktrap
5 Danisch–Guillaume–Le Grand’s Carryover opinion
6 Heat propagation based methods
7 Kleinberg’s HITS
8 ...
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Complex networks from real world

Personalised pagerank can find good communities (even if theyoverlap) in real-world networks (DBLP, Youtube, Amazon)
Community membership identification from small seed setsKloumann et Kleinberg, SIGKDD, 2014
Overlapping Community Detection Using Neighborhood-Inflated
Seed Expansion Whang, Gleich, Dhillon, 20158



Personalised pagerank
A,D : adjacency matrix, degree matrix
M = (D−1A)T : transition matrix
x0 : initial probability distribution over nodes (seed selection)
α : teleportation parameterΥ = x0111T : teleportation matrix
M̂ = αM + (1− α)Υ : google matrix

random walk lim7−−−−−−−−−→

Personalised pagerank is a vector r satisfies r = M̂r

The anatomy of a large-scale hypertextual Web search engineBrin and Page, 19989



By pagerank we findinstantaneousego-communities
(or ego-communities in static networks)



What about the dynamics?



Discrete dynamic graph models
Dynamic graphsSnapshots [Hopcroft et al., 2004, Leskovec et al., 2005],Time-varying graphs [Casteigts et al., 2012, Wehmuth et al., 2013]Link Streams [Viard, Latapy, and Magnien, 2016] illustrated below

Changes in these models are discrete.
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Our “Temporal Density” approach

1 Smooth the discrete input data (link stream)
2 Cut smoothed data into timeslices
3 Perform pagerank for all timeslices
4 Visualise
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Typical dynamic dataset: stream of links
A node interacts with another node at time t .

a b t1
c b t2
d c t3
a b t4
d b t5...
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Smooth the discrete input data
Link stream between a and b

a b t1
c b t2
d c t3
a b t4
d b t5...

transforms to
t1 t4 ...(by Parzen–Rosenblatt window method)
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Smooth the discrete input data

Time-density between a and b

Time-density between c and b

Time-density between a and c...
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Cut & pagerank
Time-density between a and b

Time-density between c and b

Time-density between a and c...

1. Cut the smoothed data into timeslices
2. For every timeslice perform a personalised pagerank using
smoothed values as link weights.
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Visualisation of ego-community dynamics
pu,v (t) : “probability” that a node v is in the ego-community of node uat time t .
pu,v (t) =PropositionAdjacency matrix A(t) is smooth ⇒ pu,v (t) is smooth.
Schema of the proofPagerank : A(t) 7→ M̂(t) 7→ pu,v (t)
M̂ is necessarily irreducible and aperiodic.Use Theorem 3.2 from A Note on Perturbations of Stochastic
Matrices by Huppert et Willems, 2000
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1. Classical community dynamics
2. Our method3. Illustrations of our method3.1 School contacts network3.2 Twitter temporal network



Primary school contact network

242 nodes, 125 773 links
17



Community dynamics visualisation
u is a fixed student from class “4A”, the centre of ego-community
v and w are others students
pu,v (t) =
pu,w (t) =

· · · · · ·

We sort these lines by values at the timestamp of interest.
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Community dynamics visualisation
Lines correspond to students.Columns are instantaneous ego-centred community structures pu,t (v )Sort by values at first timestamp.
↓

Sort by values at another timestamp.
↓
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Community dynamics visualisation
Lines correspond to students.Columns are instantaneous ego-centred community structures pu,t (v )Sort by values at another timestamp.

↓
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European Elections 2014 in Twitter

Towards a Twitter Observatory: A multi-paradigm framework for
collecting, storing and analysing tweetsIan Basaille, Kirgizov, Éric Leclercq, Marinette Savonnet, and Nadine CullotRCIS 2016
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European Elections 2014 in Twitter
Dynamic community structure around #telleuropeSort by values at this timestamp.

↓

◦
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European Elections 2014 in Twitter
Dynamic community structure around #telleuropeSort by values at this timestamp.

↓◦
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European Elections 2014 in Twitter
Dynamic community structure around #telleurope
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Conclusion
Temporal density approach for
♣ Visualisation/study of community evolution
♠ Event detection and description
Future
♣ On-line data processing
� Better sorting (MDS, correlation based, etc)
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Many thanks for yourattention!
https://github.com/kerzol/ego-evolution

http://kirgizov.link

http://eric-leclercq.fr

https://github.com/kerzol/ego-evolution
http://kirgizov.link
http://eric-leclercq.fr


...



Bonus slides!



Complexity
k : number of timeslices
n : number of nodes
m : total number of links
µ : maximal number of links between two nodesComplexity

1 Apply kernel method to smooth all link-presence functions(Binned FFT), make k timeslices — O
(
m(µ + k log k))

2 Perform pagerank for all timeslices ≈ k · O(m logm)
in total... ≈ O

(
km log(km) + mµ

)
Fast computation of kernel estimatorsRaykar, Duraiswami, et Zhao, 2010
Using pagerank to locally partition a graphAndersen, Chung, Lang, 2007
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Snapshot-based community dynamics
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Snapshot-based community dynamics
Mapping change in large networksRosvall, Bergstrom, 2010
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Better sorting ?

Sort by timestamp of maxima ofevery line Sort by sum
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Parameters
Smoothing degree, kernel bandwidth

local events global events
α , teleportation parameter of pagerank

Small α means fast return to origins.
29



Visualisation

smoothing 600, α = 0.2 smoothing 1200, α = 0.2

smoothing 600, α = 0.8 smoothing 1200, α = 0.8
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