Patterns in treeshelves

Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki

Université Bourgogne Franche-Comté

Séminaire Le2i CRSD (Combinatoire, Réseaux et Sciences des Données) 14 Février, Dijon 2017 Patterns in treeshelves

Sergey Kirgizov

Background & Motivations

Treeshel

Left children in treeshelves

patterns

...

Bijections

Knuth (1968) example

4312 sorting 1234

3 2 4 5 1 Bad!

Patterns in treeshelves

Sergey Kirgizov

Background & Motivations

Left children in

Good!

Enumerated by Catalan Numbers: 1, 1, 2, 5, 14, 42, ... Knuth sorts such permutations in linear time using only one stack.

Some permutations could be sorted using only one stack.

These are exactly the permutations avoiding 231.

Patterns in other structures

Patterns in treeshelves

Sergey Kirgizov

Background & Motivations

Treeshel

Left children in treeshelves

reeshelves avoid atterns

Ion P-recurs

Bijections

- 1. Patterns in words [Axel Thue, 1906, ...]
- 2. Patterns in set partitions

3. Patterns in inversion sequences

[Corteel, Martinez, Savage, Weselcouch, 2016] [Mansour, Shattuck, 2015]

[Martin Klazar, 1996]

- 4. Patterns in graphs, X-free graphs
- 5. Patterns in DNA, in complex networks, ...

Meaning of "pattern" depends on the context!

Our motivations

- ► New objects/patterns
- New interesting properties (enumerated by existing/new sequences, and bijectively linked to existing structures)

My personal motivations

► I'm looking for interesting connections between enumerative/bijective combinatorics and structure/dynamics of complex networks (internet, brain, proteins, social), certain graph coloration problems.

Background & Motivations

Ireeshelves

Left children in

atterns

iioctions

Treeshelves

are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Treeshelves, patterns and permutations

Patterns in treeshelves

Sergey Kirgizov

Background & Motivations

Treeshelves

Left children in treeshelves

patterns

3 4 6

Treeshelves are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Treeshelves, patterns and permutations

Sergey Kirgizov

Background & Motivations

Treeshelves

Left children in treeshelves

patterns

Rijoctions

Treeshelves are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Treeshelves, patterns and permutations

Sergey Kirgizov

Background & Motivations

Treeshelves

Left children in treeshelves

patterns

Treeshelves are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Françon bijection

Patterns in treeshelves

Sergey Kirgizov

Treeshelves

Figure 2.

Arbre binaire décroissant correspondant au mot 426813975.

Bijection: Treeshelves ↔ **Permutations**

[Jean Françon, 1976]

Analytic enumeration of

treeshelves

Labeled objects

Patterns in treeshelves

Treeshelves

patterns

Bijections

Sergey Kirgizov

Unlabeled objects

Generating function $\sum a_n x^n$

Labeled objects

Unlabeled objects

Patterns in treeshelves Sergey Kirgizov

ckground &

Treeshelves

ft childi eeshelve

atterns

Non M-rec

Generating function $\sum a_n x^n$ Generating

Generating function $\sum b_n \frac{x^n}{n!}$

Labeled

 a_n and b_n count objects of size n.

$$b_n = a_n n!$$

9

			١
Objects		Generating function	7
\mathcal{A}		A	t
\mathcal{B}		В	F
$\mathcal{B}\star\mathcal{A}$	pairs with relabeling	$A \cdot B$	P F
$\mathcal{A}^{\square} \star \mathcal{B}$	pairs with relabeling, the smallest label goes to ${\cal A}$	$\int_0^z \partial_t A(t) B(t) \mathrm{d}t$	L

[Flajolet and Sedgewick, Analytic combinatorics Theorem II.5] $\mathcal{B} = \text{EMPTY} \quad \text{or} \quad \mathcal{B} \xrightarrow{1} \mathcal{B}$

 $\mathcal{Z} = {\overset{1}{\bullet}}$

Treeshelves

eft children in

reeshelves avoid patterns

Bijections

Treeshelves

ft children in eeshelves

Treeshelves avoid patterns

Bijections

$$\mathcal{Z} = \frac{1}{8}$$
 $\mathcal{B} = \text{EMPTY} \quad \text{or} \quad \mathcal{B} = \frac{1}{8}$

 $\mathcal{B} = \epsilon + \mathcal{Z}^{\square} \star (\mathcal{B} \star \mathcal{B})$

Enumeration of treeshelves

Bijections

$$\mathcal{Z} = \overset{1}{\bullet}$$
 $\mathcal{B} = \text{EMPTY} \quad \text{or} \quad \overset{1}{\mathcal{B}} \overset{1}{\bullet} \overset{1}{\mathcal{B}}$

$$\mathcal{B} = \epsilon + \mathcal{Z}^{\square} \star (\mathcal{B} \star \mathcal{B})$$

$$B(z) = 1 + \int_0^z B^2(t) dt$$
, $B(0) = 1$

Enumeration of treeshelves

- $\mathcal{Z} = \stackrel{1}{\bullet}$
- $\mathcal{B} = \text{EMPTY} \quad \text{or} \quad \mathcal{B} \stackrel{1}{\searrow} \mathcal{B}$

$$\mathcal{B} = \epsilon + \mathcal{Z}^{\square} \star (\mathcal{B} \star \mathcal{B})$$

$$B(z) = 1 + \int_0^z B^2(t) dt$$
, $B(0) = 1$

$$B(z) = \frac{1}{1-z} = \sum_{n=0}^{\infty} n! \frac{z^n}{n!}$$

i.e. the exponential generating function for n!

Left children in treeshelves

Background & Motivations

reeshelves

Left children in treeshelves

atterns

Bijections

(non empty treeshelves)

(non empty treeshelves)

$$\mathcal{B}^{\bullet} = {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet} {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet} {\overset{1}{\bullet}} \mathcal{B}^{\bullet}$$

$$\mathcal{B}^{\bullet} = \mathcal{Z} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star (\mathcal{B}^{\bullet})^{2}$$

patterns

iioctions

(non empty treeshelves)

$$\mathcal{B}^{\bullet} = {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet} {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet} {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet}$$

$$\mathcal{B}^{\bullet} = \mathcal{Z} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star (\mathcal{B}^{\bullet})^{2}$$

Use *y* for left children.

Initial condition $B^{\bullet}(0, y) = 0$

$$B^{\bullet}(z, y) = z + y \int_0^z B^{\bullet}(t, y) dt + \int_0^z B^{\bullet}(t, y) dt + y \int_0^z (B^{\bullet}(t, y))^2 dt$$

12

(non empty treeshelves)

$$\mathcal{B}^{\bullet} = {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet} \overset{1}{\text{ or }} \mathcal{B}^{\bullet} \text{ or } \mathcal{B}^{\bullet} \overset{1}{\mathcal{B}^{\bullet}}$$

$$\mathcal{B}^{\bullet} = \mathcal{Z} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star (\mathcal{B}^{\bullet})^{2}$$

Use *y* for left children.

$$B^{\bullet}(z, y) = z + y \int_0^z B^{\bullet}(t, y) dt + \int_0^z B^{\bullet}(t, y) dt + y \int_0^z (B^{\bullet}(t, y))^2 dt$$

Initial condition $B^{\bullet}(0, y) = 0$

$$B^{\bullet}(z, y) = \frac{1 - e^{z(y-1)}}{e^{z(y-1)} - y}$$

Left children in treeshelves

Patterns in treeshelves

Sergey Kirgizov

. .

Treeshelves

treeshelves Treeshelves avoid

lon P-recu

ections

(non empty treeshelves)

$$\mathcal{B}^{\bullet} = {\overset{1}{\bullet}} \text{ or } \mathcal{B}^{\bullet} \overset{1}{\text{ or }} \mathcal{B}^{\bullet} \text{ or } \mathcal{B}^{\bullet} \overset{1}{\mathcal{B}^{\bullet}}$$

$$\mathcal{B}^{\bullet} = \mathcal{Z} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star \mathcal{B}^{\bullet} + \mathcal{Z}^{\square} \star (\mathcal{B}^{\bullet})^{2}$$

Use y for left children.

$$B^{\bullet}(z,y) = z + y \int_0^z B^{\bullet}(t,y) dt + \int_0^z B^{\bullet}(t,y) dt + y \int_0^z (B^{\bullet}(t,y))^2 dt$$

Initial condition $B^{\bullet}(0, y) = 0$

$$B^{\bullet}(z,y) = \frac{1 - e^{z(y-1)}}{e^{z(y-1)} - y}$$

$$B(z, y) = 1 + B^{\bullet}(z, y) = \frac{1-y}{e^{z(y-1)}-y}$$

- $B(z, y) = 1 + B^{\bullet}(z, y) = \frac{1 y}{e^{z(y-1)} y}$
- Left children distribution in treeshelves has exponential generating function B(z, y)
- · shift of Eulerian numbers A008292
- ► Left children popularity corresponds to $\partial_y B(z, y)|_{y=1} = \frac{z^2}{2z^2 4z + 2}$
 - · Lah numbers <u>A001286</u>.

well known results see [Petersen, Eulerian numbers, 2015]

Treeshelves avoid

patterns

$$\mathcal{Z} = \overset{1}{\bullet}$$
 \mathcal{E} denotes treeshelves avoiding

Background & Motivations

reeshelves

ft children in eshelves

Treeshelves avoid patterns

Bijections

T-patterns, patterns in Threshelfs

Patterns in treeshelves

Sergey Kirgizov

Background &

Treeshel

Left children ir treeshelves

Treeshelves avoid patterns

_

 $\mathcal{Z} = \overset{1}{\bullet}$ \mathcal{E} denotes treeshelves avoiding

T-patterns, patterns in Threshelfs

Patterns in treeshelves

Sergey Kirgizov

Background & Motivations

eeshelves

Left children in treeshelves

Treeshelves avoid patterns

Rijections

 $\mathcal{Z} = \overset{1}{\bullet}$ \mathcal{E} denotes treeshelves avoiding

$$\mathcal{E} = \epsilon + \mathcal{Z}^{\square} \star \mathcal{E} + \left(\mathcal{Z}^{\square} \star \mathcal{E} \right)^{\square} \star \left(\mathcal{Z}^{\square} \star \mathcal{E} \right)$$

Boxed product → integral equation The equation + initial conditions → generating function.

San and a large

Left children in treeshelves

Treeshelves avoid patterns

on P-recursivity

Bijections

$\mathcal{B}(P)$ denotes treeshelves avoiding a t-pattern

Pattern P	Sequence counting $\mathcal{B}(P)$	OEIS
<	1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147,	<u>A000110</u> (Bell)
1	1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521,	<u>A000111</u> (Euler)
<u> </u>	1, 1, 2, 5, 16, 64, 308, 1730, 11104, 80176,	<u>A131178</u>

 $\mathcal{B}(P)$ denotes treeshelves avoiding a t-pattern

y corresponds to left childrens

Pattern P	Generating function for $\mathcal{B}(P)$
<	$e^{\frac{e^{zy}-1}{y}}$
1	$\frac{2y-1}{y\cosh\left(z\sqrt{-2y+1}+\ln\left(\frac{1}{y}\left(y+\sqrt{-2y+1}-1\right)\right)\right)+y}$
^	$\frac{-2}{1+y-\sqrt{y^2+1}\coth\left(\frac{z\sqrt{y^2+1}}{2}\right)}$

Pattern P	Popularity of left children in $\mathcal{B}(P)$	
<	1, 5, 23, 109, 544, 2876, 16113,	<u>A278677</u>
1	1, 4, 19, 94, 519, 3144, 20903, 151418,	<u>A278678</u>
^	1, 5, 24, 128, 770, 5190, 38864, 320704,	<u>A278679</u>

Background & Motivations

eeshelves

Left childre treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Pattern P	Generating functions	Asymptotics
<	$(ze^z - e^z + 1) e^{e^z - 1}$	$\sqrt{n} \left(\frac{n}{W(n)} \right)^{n+\frac{1}{2}} e^{\frac{n}{W(n)} - n - 1}$
1	$\frac{-\sin z + 1 + (z-1)\cos z}{\left(1 - \sin z\right)^2}$	$\frac{8(\pi-2)}{\pi^3} n^2 \left(\frac{2}{\pi}\right)^n$
^	$\frac{e^{\sqrt{2}z}(4z-4)-(\sqrt{2}-2)e^{2\sqrt{2}z}+\sqrt{2}+2}{((\sqrt{2}-2)e^{\sqrt{2}z}+2+\sqrt{2})^2}$	$n\left(\frac{\sqrt{2}}{\ln\left(2\sqrt{2}+3\right)}\right)^{n+1}$

Background & Motivations

eeshelves

Left children in treeshelves

Treeshelves avoid patterns

Bijections

W is the Lambert function, i.e. W(n) is the unique solution of $W(n) \cdot e^{W(n)} = n$

Asymptotics could be used to estimate the probability that a randomly selected link is left.

Popularity of left children III

Patterns in treeshelves Sergey Kirgizov

interesting facts

Background &

Moreover,

....l..l...

Left children popularity in $\mathcal{B}(\boldsymbol{\varsigma})$ of size n equals

Left children in treeshelves

$$(n+1)b_n - b_{n+1}$$

Treeshelves avoid patterns

where b_n is the n-th Bell number.

iiections

Popularity of left children III

Patterns in treeshelves Sergey Kirgizov

interesting facts

Moreover.

Left children popularity in $\mathcal{B}(\boldsymbol{\varsigma})$ of size n equals

Left children popularity in $\mathcal{B}(\mathscr{S})$ of size n equals

$$(n+1)b_n - b_{n+1}$$

where b_n is the n-th Bell number.

,

$$(n+1)e_n - e_{n+1}$$

where e_n is the shifted Euler number defined by the e.g.f.

$$\frac{1}{1-\sin(z)}$$
.

lotivations

eshelves

Left children in treeshelves

Treeshelves avoid

patterns

inctions

jections

Is it easy to calculate coefficients?

are solutions of ordinary differential equations with polynomial coefficients

P-recursive sequence

Sequence a_n is P-recursive if $\exists k$ and polynomials p_0, p_1, \ldots, p_k such that

$$p_0(n) \cdot a_n = p_1(n) \cdot a_{n-1} + p_2(n) \cdot a_{n-2} + \ldots + p_k(n) \cdot a_{n-k}$$

 D-finite function generates p-recursive sequence and vice versa. $f(x) = \sum_{n=0}^{\infty} a_n x^n$

Fast coeff. calculations. Nice properties. Important notions.

For more info see, for example, Cyril Banderier's talk https://www.irif.fr/~poulalho/ALEA09/slides/banderier.pdf

Left children in

Non P-recursivitu

Pattern P	Generating functions	Asymptotics	Ba M Tr
<	$(ze^z - e^z + 1)e^{e^z - 1}$	$\sqrt{n} \left(\frac{n}{W(n)} \right)^{n+\frac{1}{2}} e^{\frac{n}{W(n)} - n - 1}$	Le tre
p	$\frac{-\sin z + 1 + (z-1)\cos z}{\left(1 - \sin z\right)^2}$	$\frac{8(\pi-2)}{\pi^3}n^2\left(\frac{2}{\pi}\right)^n$	pa No
^	$\frac{e^{\sqrt{2}z}(4z-4)-(\sqrt{2}-2)e^{2\sqrt{2}z}+\sqrt{2}+2}{((\sqrt{2}-2)e^{\sqrt{2}z}+2+\sqrt{2})^2}$	$n\left(\frac{\sqrt{2}}{\ln\left(2\sqrt{2}+3\right)}\right)^{n+1}$	Bi

The functions above are not D-finite:

- ightharpoonup e^{e^z-1} is not D-finite because it grows too fast
- D-finite ⇒ finitely many singularities

[Flajolet, Gerhold, Salvy, 2005]

Bijections

Patterns	ιn
treeshelve	es

Sergey Kirgizov

Background & Motivations

patterns

Bijections

Pattern P	Treeshelfs avoiding <i>P</i> are in bijection with
<	Set partitions
1	Unordered (non-plane) binary increasing trees
^	Unordered binary increasing trees where the nodes of outdegree 1 come in 2 colors A131178

Background & Motivations

Treeshelv

Left children in treeshelves

patterns

Bijections

Theorem

There is a bijection between unordered binary increasing trees with n+1 nodes and the set $\mathcal{B}_n\left(\begin{array}{c} \bullet \end{array} \right)$ of t-shelves of size n avoiding the pattern $\begin{array}{c} \bullet \end{array}$.

Standard representation of an unordered (non-plane) tree

► Nodes with two children:

$$\int_{y}^{u} z$$
, when $z < y$

▶ Nodes with only one child:

Standard representation is a treeshelf

Sergey Kirgizov

Motivations

Treeshe

Left children in treeshelves

patterns

Bijections

Shift a node *y* of treeshelf under two conditions:

- ightharpoonup y is a left child and it has a right sibling, say z; and
- z in turn does not have a left child and its label is smaller than that of y.

Shift of a treeshelf is defined recursively by shifting, in order, the right subtree, the root, and then the left subtree.

Unordered ↔ Ordered

Theorem

There is a bijection between unordered binary increasing trees with n+1 nodes and the set $\mathcal{B}_n(\mathcal{P})$.

Proof illustration

Our results:

- ► Treeshelfs avoiding pattern of size 3
 - Known sequences
 - Analytic enumeration
 - Bijections
- Distribution of left children in treeshelfs avoiding patterns of size 3
 - Bivariate generating functions with respect to the number left children and size.
- Popularity of left children in treeshelfs avoiding patterns of size 3
 - New sequences!
 - ▶ Not P-recursive, MC-finite (!?)
 - Asymptotics provided

Background & Motivations

reeshelves

Left children in treeshelves

atterns

.....

Bijections

Patterns in treeshelves

Paper: https://arxiv.org/abs/1611.07793v1

Slides: http://kirgizov.link/talks/dijon-2017.pdf