Patterns in treeshelves

Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki

Université Bourgogne Franche-Comté

Séminaire Le2i CRSD
 (Combinatoire, Réseaux et Sciences des Données)
 14 Février, Dijon 2017

Knuth (1968) example

$4312 \stackrel{\text { sorting }}{\longmapsto} 1234$
Some permutations could be sorted using only one stack. These are exactly the permutations avoiding 231.

Enumerated by Catalan Numbers: 1, 1, 2, 5, 14, 42, ... Knuth sorts such permutations in linear time using only one stack.

Patterns in other structures

Background \& Motivations
[Corteel, Martinez, Savage, Weselcouch, 2016] [Mansour, Shattuck, 2015]
4. Patterns in graphs, X-free graphs
5. Patterns in DNA, in complex networks, ...

Meaning of "pattern" depends on the context!

Popelarity of $1,2,5, \ldots$

Background and motivations

Our motivations

- New objects/patterns
- New interesting properties (enumerated by existing/new sequences, and bijectively linked to existing structures)

My personal motivations

- I'm looking for interesting connections between enumerative/bijective combinatorics and structure/dynamics of complex networks (internet, brain, proteins, social), certain graph coloration problems.

Treeshelves

are ordered binary
increasing trees where every child is connected to its parent by a left or a right link.

Treeshelves, patterns and permutations

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Treeshelves are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Treeshelves, patterns and permutations

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshetves avoid patterns

Non P-recursivity
Bijections

Treeshelves are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Treeshelves, patterns and permutations

Patterns $\{\varnothing, \downarrow, \varnothing, \varnothing,<, \varnothing,>, \downarrow$,$\} .$

Treeshelves are ordered binary increasing trees where every child is connected to its parent by a left or a right link.

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Françon bijection

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Bijection: Treeshelves \leftrightarrow Permutations
[Jean Françon, 1976]

Analytic enumeration of treeshelves

Labeled objects

Unlabeled objects

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Generating function $\sum a_{n} x^{n}$

Labeled objects

Unlabeled objects

Labeled

Background \& Motivations

Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity

Generating function $\sum a_{n} x^{n} \quad$ Generating function $\sum b_{n} \frac{x^{n}}{n!}$
a_{n} and b_{n} count objects of size n.
$b_{n}=a_{n} n!$

Boxed product of labeled objects

Background \& Motivations

Objects		Generating function
\mathcal{A}		A
\mathcal{B}		B
$\mathcal{B} \star \mathcal{A}$	pairs with relabeling	$A \cdot B$
$\mathcal{A}^{\square} \star \mathcal{B}$	pairs with relabeling, the smallest label goes to \mathcal{A}	$\int_{0}^{z} \partial_{t} A(t) B(t) \mathrm{d} t$

[Flajolet and Sedgewick, Analytic combinatorics
Theorem II.5]

Enumeration of treeshelves

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Enumeration of treeshelves

$\begin{aligned} \mathcal{Z} & =! \\ \mathcal{B} & =\text { EMPTY } \quad \text { or } \quad \mathcal{B}^{-}{ }^{\bullet}{ }_{\mathcal{B}}\end{aligned}$
$\mathcal{B}=\epsilon+\mathcal{Z}^{\square} \star(\mathcal{B} \star \mathcal{B})$

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Enumeration of treeshelves

Background \&

 MotivationsTreeshelves
Left children in treeshelves

Treeshetves avoid patterns

$$
\mathcal{B}=\epsilon+\mathcal{Z}^{\square} \star(\mathcal{B} \star \mathcal{B})
$$

$$
B(z)=1+\int_{0}^{z} B^{2}(t) \mathrm{d} t, B(0)=1
$$

Enumeration of treeshelves

$\begin{aligned} \mathcal{Z} & =! \\ \mathcal{B} & =\text { EMPTY } \quad \text { or } \quad \mathcal{B}^{-1}{ }_{\mathcal{B}}\end{aligned}$
$\mathcal{B}=\epsilon+\mathcal{Z}^{\square} \star(\mathcal{B} \star \mathcal{B})$
$B(z)=1+\int_{0}^{z} B^{2}(t) \mathrm{d} t, B(0)=1$
$B(z)=\frac{1}{1-z}=\sum_{n=0}^{\infty} n!\frac{n^{n}}{n!}$
i.e. the exponential generating function for n !

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshetves avoid patterns

Non P-recursivity
Bijections

Left children in treeshelves

Left children in treeshelves

(non empty treeshelves)
$\mathcal{B}^{\bullet}=\bullet^{\bullet}$ or $\mathcal{B}^{\bullet}{ }^{\bullet}$ or ${ }^{\bullet} \mathcal{B}^{\bullet}$ or $\mathcal{B}^{\bullet}{ }^{\bullet} \mathcal{B}^{\bullet}$

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Left children in treeshelves

(non empty treeshelves)

$$
\begin{aligned}
& \mathcal{B}^{\bullet}=1 \text { or } \mathcal{B}^{\bullet}{\stackrel{1}{\bullet} \text { or }{ }^{\bullet} \mathcal{B}^{\bullet} \text { or } \mathcal{B}^{\bullet} \stackrel{1}{\bullet}_{\mathcal{B}^{\bullet}}}_{\mathcal{B}^{\bullet}}=\mathcal{Z}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star\left(\mathcal{B}^{\bullet}\right)^{2}
\end{aligned}
$$

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Left children in treeshelves

(non empty treeshelves)

$\mathcal{B}^{\bullet}=\mathcal{Z}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star\left(\mathcal{B}^{\bullet}\right)^{2}$
Use y for left children.
$B^{\bullet}(z, y)=z+y \int_{0}^{z} B^{\bullet}(t, y) \mathrm{d} t+\int_{0}^{z} B^{\bullet}(t, y) \mathrm{d} t+y \int_{0}^{z}\left(B^{\bullet}(t, y)\right)^{2} \mathrm{~d} t$ Initial condition $B^{\bullet}(0, y)=0$

Background \& Motivations

Treeshelves

Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity

Left children in treeshelves

(non empty treeshelves)
$\mathcal{B}^{\bullet}={ }^{1}$ or $\mathcal{B}^{0^{\bullet}}$ or $\stackrel{!}{\bullet}_{\mathcal{B}^{\bullet}}$ or $\mathcal{B}^{0^{\bullet}}{\stackrel{1}{\mathcal{B}^{\bullet}}}^{\text {. }}$
$\mathcal{B}^{\bullet}=\mathcal{Z}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star\left(\mathcal{B}^{\bullet}\right)^{2}$
Use y for left children.
$B^{\bullet}(z, y)=z+y \int_{0}^{z} B^{\bullet}(t, y) \mathrm{d} t+\int_{0}^{z} B^{\bullet}(t, y) \mathrm{d} t+y \int_{0}^{z}\left(B^{\bullet}(t, y)\right)^{2} \mathrm{~d} t$ Initial condition $B^{\bullet}(0, y)=0$

$$
B^{\bullet}(z, y)=\frac{1-\mathrm{e}^{2(y-1)}}{\mathrm{e}^{(y-1)}-y}
$$

Left children in treeshelves

(non empty treeshelves)
$\mathcal{B}^{\bullet}={ }^{1}$ or $\mathcal{B}^{0^{\bullet}}$ or $\stackrel{!}{\bullet}_{\mathcal{B}^{\bullet}}$ or $\mathcal{B}^{0^{\bullet}}{\stackrel{1}{\mathcal{B}^{\bullet}}}^{\text {. }}$
$\mathcal{B}^{\bullet}=\mathcal{Z}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star \mathcal{B}^{\bullet}+\mathcal{Z}^{\square} \star\left(\mathcal{B}^{\bullet}\right)^{2}$
Use y for left children.
$B^{\bullet}(z, y)=z+y \int_{0}^{z} B^{\bullet}(t, y) \mathrm{d} t+\int_{0}^{z} B^{\bullet}(t, y) \mathrm{d} t+y \int_{0}^{z}\left(B^{\bullet}(t, y)\right)^{2} \mathrm{~d} t$ Initial condition $B^{\bullet}(0, y)=0$

$$
\begin{aligned}
& B^{\bullet}(z, y)=\frac{1-\mathrm{e}^{2(y-1)}}{\mathrm{e}^{2(y-1)}-y} \\
& B(z, y)=1+B^{\bullet}(z, y)=\frac{1-y}{\mathrm{e}^{2(y-1)}-y}
\end{aligned}
$$

$$
B(z, y)=1+B^{\bullet}(z, y)=\frac{1-y}{\mathrm{e}^{z(y-1)}-y}
$$

- Left children distribution in treeshelves has exponential generating function $B(z, y)$
- shift of Eulerian numbers $\underline{\text { A008292 }}$
- Left children popularity corresponds to

$$
\left.\partial_{y} B(z, y)\right|_{y=1}=\frac{z^{2}}{2 z^{2}-4 z+2}
$$

- Lah numbers A001286.
well known results see [Petersen, Eulerian numbers, 2015]

Treeshelves avoid patterns

T-patterns, patterns in Threshelfs

$\mathcal{Z}=!$
\mathcal{E} denotes treeshelves avoiding

Background \& Motivations

```
Treeshelves
```

Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

T-patterns, patterns in Threshelfs

$\mathcal{Z}=!$
\mathcal{E} denotes treeshelves avoiding

Background \& Motivations

Treeshelves

Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

T-patterns, patterns in Threshelfs

$\mathcal{Z}={ }^{1}$
\mathcal{E} denotes treeshelves avoiding

$$
\begin{aligned}
& \mathcal{E}= \text { EMPTY or } \searrow_{\mathcal{E}}^{1} \text { or } \\
& \mathcal{E}=\epsilon+\mathcal{Z}^{\square} \star \mathcal{E}+\left(\mathcal{Z}^{\square} \star \mathcal{E}\right)^{\square} \star\left(\mathcal{Z}^{\square} \star \mathcal{E}\right)
\end{aligned}
$$

Boxed product \rightarrow integral equation
The equation + initial conditions \rightarrow generating function.

Treeshelves avoiding a size 3 pattern

Left children distribution in treeshelves

 avoiding a size 3 patternBackground \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Left children popularity I

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Left children popularity II

Pattern P	Generating functions	Asymptotics
	$\left(z \mathrm{e}^{z}-\mathrm{e}^{z}+1\right) \mathrm{e}^{\mathrm{e}^{z}-1}$	$\sqrt{n}\left(\frac{n}{W(n)}\right)^{n+\frac{1}{2}} \mathrm{e}^{\frac{n}{W(n)}-n-1}$
	$\frac{-\sin z+1+(z-1) \cos z}{(1-\sin z)^{2}}$	$\frac{8(\pi-2)}{\pi^{3}} n^{2}\left(\frac{2}{\pi}\right)^{n}$
	$\frac{e^{\sqrt{2} z}(4 z-4)-(\sqrt{2}-2) e^{2 \sqrt{2} z}+\sqrt{2}+2}{\left((\sqrt{2}-2) e^{\sqrt{2} z}+2+\sqrt{2}\right)^{2}}$	$n\left(\frac{\sqrt{2}}{\ln (2 \sqrt{2}+3)}\right)^{n+1}$

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections
W is the Lambert function, i.e. $W(n)$ is the unique solution of $W(n) \cdot e^{W(n)}=n$
Asymptotics could be used to estimate the probability that a randomly selected link is left.

Popularity of left children III

Moreover,

Left children popularity in $\mathcal{B}(\boldsymbol{\zeta})$ of size n equals

$$
(n+1) b_{n}-b_{n+1}
$$

where b_{n} is the n-th Bell number.

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Popularity of left children III

interesting facts

Moreover,

Left children popularity in $\mathcal{B}(\boldsymbol{\zeta})$ of size n equals

$$
(n+1) b_{n}-b_{n+1}
$$

where b_{n} is the n-th Bell number.

Left children popularity in $\mathcal{B}\left(\boldsymbol{\Omega}^{\circ}\right)$ of size n equals

$$
(n+1) e_{n}-e_{n+1}
$$

where e_{n} is the shifted Euler number defined by the e.g.f. $\frac{1}{1-\sin (z)}$.

Is it easy to calculate coefficients ?

P-recursivity

D-finite functions

are solutions of ordinary differential equations with polynomial coefficients

P-recursive sequence

Sequence a_{n} is P-recursive if $\exists k$ and polynomials $p_{0}, p_{1}, \ldots, p_{k}$ such that

$$
p_{0}(n) \cdot a_{n}=p_{1}(n) \cdot a_{n-1}+p_{2}(n) \cdot a_{n-2}+\ldots+p_{k}(n) \cdot a_{n-k}
$$

- D-finite function generates p-recursive sequence and vice versa. $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$

Fast coeff. calculations. Nice properties. Important notions.
For more info see, for example, Cyril Banderier's talk https://www.irif.fr/~poulalho/ALEA09/slides/banderier.pdf

Popularity sequences are not P -recursive

Pattern P	Generating functions	Asymptotics
	$\left(z \mathrm{e}^{z}-\mathrm{e}^{z}+1\right) \mathrm{e}^{\mathrm{e}^{z}-1}$	$\sqrt{n}\left(\frac{n}{W(n)}\right)^{n+\frac{1}{2}} \mathrm{e}^{\frac{n}{W(n)}-n-1}$
	$\frac{-\sin z+1+(z-1) \cos z}{(1-\sin z)^{2}}$	$\frac{8(\pi-2)}{\pi^{3}} n^{2}\left(\frac{2}{\pi}\right)^{n}$
$\left(\sqrt{\sqrt{2} z}(4 z-4)-(\sqrt{2}-2) e^{2 \sqrt{2} z}+\sqrt{2}+2\right.$		
$(\sqrt{2}-2)$	$n\left(\frac{\sqrt{2}}{\ln (2 \sqrt{2}+3)}\right)^{n+1}$	

Background \&i Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

The functions above are not D-finite:

- $\mathrm{e}^{\mathrm{e}^{2}-1}$ is not D-finite because it grows too fast
- D-finite \Rightarrow finitely many singularities
[Flajolet, Gerhold, Salvy, 2005]

Bijections

Bijections

Background \& Motivations

Unordered binary increasing trees where the nodes of outdegree 1 come in 2 colors A131178

Unordered \leftrightarrow Ordered

Theorem

There is a bijection between unordered binary increasing trees with $n+1$ nodes and the set $\mathcal{B}_{n}(\boldsymbol{\Omega})$ of t-shelves of size n avoiding the pattern

Treeshelves avoid patterns

Non P-recursivity
Bijections

Standard representation

Standard representation of an unordered (non-plane) tree

- Nodes with two children:

$$
\int_{y}^{u} z, \text { when } z<y
$$

- Nodes with only one child:

Standard representation is a treeshelf

Shift

Shift a node y of treeshelf under two conditions:

- y is a left child and it has a right sibling, say z; and
- z in turn does not have a left child and its label is smaller than that of y.

Background \& Motivations

Treeshelves
Left children in treeshelves

Treeshelves avoid patterns

Non P-recursivity
Bijections

Shift of a treeshelf is defined recursively by shifting, in order, the right subtree, the root, and then the left subtree.

Unordered \leftrightarrow Ordered

Theorem

There is a bijection between unordered binary increasing trees with $n+1$ nodes and the set $\mathcal{B}_{n}(\curvearrowright)$.

Proof illustration

Conclusion

Our results:

- Treeshelfs avoiding pattern of size 3
- Known sequences
- Analytic enumeration
- Bijections
- Distribution of left children in treeshelfs avoiding patterns of size 3
- Bivariate generating functions with respect to the number left children and size.
- Popularity of left children in treeshelfs avoiding patterns of size 3
- New sequences!
- Not P-recursive, MC-finite (!?)
- Asymptotics provided

Patterns in treeshelves

Paper: https://arxiv.org/abs/1611.07793v1
Slides: http://kirgizov.link/talks/dijon-2017.pdf

