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Overview

o Classical Fibonacci words
@ Q-bonacci words

o Fractionally generalized golden ratio

In this talk Fibonacci words should
not be confused with Sturmian Fibonacci words.



Initial terms: 0,...,0,0,1,

an

Cn

= ap_1 + an—p, Fibonacci

= b,_1 + bp_» + b,_3, Tribonacci

= Cp—1 + Cn—2 + Ch—3 + Cn_a, Tetranacci

Generalized Fibonacci numbers and associated matrices, 1960
E. P. Miles Jr.

Fibonacci-Tribonacci, 1963
M. Feinberg
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Words avoiding 1% are counted by generalized Fibonacci numbers

Let B,(1¥) be the set of binary words of length n avoiding 1,

1B2(19)] = sk,

where f, « is a generalized Fibonacci number defined as

0 fo<n< k-2,
fn,k: 1 I.fn:k—]_,
Zf;l fo_ik otherwise.

fn2  Fibonacci
fn3 1 Tribonacci
fna @ Tetranacci



Classical Fibonacci words literature

& The Art of Computer Programming, Vol. 3: Sorting and Searching,
2 ed. (page 286), 1998, Donald Knuth

& Matters Computational (Section 14.2), 2010, Jorg Arndt
https://www.jjj.de/fxt/fxtbook.pdf

@

Combinatorial Gray codes-an updated survey, 2022
Torsten Miitze, https://arxiv.org/pdf/2202.01280.pdf

Generalized Fibonacci cubes are mostly Hamiltonian
Jenshiuh Liu, Wen-Jing Hsu, Moon Jung Chung, 1994

Gray codes for A-free strings. Matthew B. Squire, 1996

A loopless generation of bitstrings without p consecutive ones
Vincent Vajnovszki, 2001

T R T B (7 (7

An O(1) time algorithm for generating Fibonacci strings
Kenjit Mikawa and Ishiro Semba, 2005

® Counting on Fibonacci Polyominoes and Fibonacci Graphs
José L. Ramirez, 2022, This Fibonacci Conference :) 6


https://www.jjj.de/fxt/fxtbook.pdf
https://arxiv.org/pdf/2202.01280.pdf

Can we extend
the definition of f, x
to cover the case where k is
not an integer?



Half-bonacci numbers?



Yes, we can!
| et's see how!



Definition

An n-length binary word is g-decreasing, g € N*, if every of its
length maximal factors of the form 071 satisfies a = 0 or
g-a>b.

...1000------ 00111---110---
5;_/Hb’—/

Let Wq,» be the set of such words of length n.
Let Wq == UHEN Wq’n-



1-decreasing words, W;

In particular, in a 1-decreasing word every run of Os is
immediately followed by a strictly shorter run of 1s.

---1000------ 00111---110--- a>bora=20
_;—/T
Let's count! n|1 2 3 14
i |2 3 5 8 Fibonacci

0000

000 0001

0010
00 001

0 1000

10 100 000

11 110 s

111 1100

1110

1111 8



2-decreasing words, W,

---1000------ 00111---110--- where2a>bora=20
e G
Let's count! n | 123 14
| 2 4 7 13 Tribonacci

0000
0001
0010
000 0011
001 0100
0 8(1) 010 0101

1 10 100 1000 ...
1 101 1001
110 1010
111 1100
1101
1110

MM 9



g-decreasing words with natural g

o Bijections between g-decreasing words and words
avoiding factors 1971,

o Efficient generation and Gray codes

@ Solved Egecioglu-Irsi¢ conjecture
(Hamiltonian path always exists in Fibonacci-run graphs)

@ Mean bit value in random words

10



g-decreasing Fibonacci words literature

[@ Gray codes for Fibonacci q-decreasing words
Jean-Luc Baril, Sk and Vincent Vajnovszki
https://arxiv.org/abs/2010.09505
Theoretical Computer Science, 2022.

[@ Fibonacci-run graphs I: Basic properties
Omer Egecioglu and Vesna Iri¢
https://arxiv.org/abs/2010.05518
Discrete Applied Mathematics, 2021

[@ Qubonacci words, BKV
Presented at Permutations patterns 2021
https://kirgizov.link/talks/qubonacci.pdf

[@ Asymptotic bit frequency in Fibonacci words, BKV
Presented at GASCom 2022
https://kirgizov.link/talks/gascom2022.pdf
https://arxiv.org/abs/2106.13550
Pure Mathematics and Applications, 2022 11


https://arxiv.org/abs/2010.09505
https://arxiv.org/abs/2010.05518
https://kirgizov.link/talks/qubonacci.pdf
https://kirgizov.link/talks/gascom2022.pdf
https://arxiv.org/abs/2106.13550

From N to QT
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Definition |l

Q
€

An n-length binary word is g-decreasing, ¢ N, if every of
its length maximal factors of the form 071 satisfies a = 0 or
g-a>b.

...1000------ 00111---110---
_,_/hb,_/
a

Let Wq,» be the set of such words of length n.
Let Wg = Unen Wa.n-
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1/2-decreasing words (half-bonacci)

1
---1000------ 00111---110--- where —a>bora=20
a
Let's count! —" | 123 45
' | 2 3 4 6 9 Narayana's cows, year 1356

ap = ap-1+ an-3

00000
0000 00001
00010
000 0001
00 10000
0 100 1000
10 10001 «.e
1 110 1100
11 11000
111 1110
1111 11100
11110
11111

13



Construction



Example g = 1/2

Every word from Wy > looks like

]_...]_0‘10'2 -+ Oy,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
0

14
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Example g = 1/2

Every word from Wj ), looks like

]_...]_0‘10'2...0'€,

where g; is an element from the set of admissible suffixes.

Admissible suffixes
0

0001

000001 1

00000001 11
0000000001 111
000000000001 1111

1+2/ zeros

—

0---001---11
——

i ones

14



Example g = 1/2

Every word from Wj ), looks like

]_...]_0‘10'2 -+ Oy,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
0

0001

000001 1

00000001 11
0000000001 111
000000000001 1111

]
Model polynomial Pijp(y, z) = z
encodes the initial admissible suffix 0.

1+2/ zeros
—

0---001---11
———

i ones



Example g = 1/2

Every word from Wj ), looks like

1...10‘10'2 -+ Oy,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
]

e Model polynomial Pijp(y, z) = z
0001 encodes the initial admissible suffix 0.
0000011 S ing infix 001 i ded by 22
00000001 11 pawning infix is encoded by z°y.
0000000001 111 Admissible suffixes are constructed
000000000001 1111 iteratively by injecting the spawning
o infix 001 just after the last 0 in
1+2i zeros g
A already constructed suffixes.
0---001---11
———

i ones



Example g = 2/3

Every word from W3 looks like
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Admissible suffixes
0
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15



Example g = 2/3

Every word from W3 looks like

]_...]_0‘10'2 -+ 0y,
where g; is an element from the set of admissible suffixes.
Admissible suffixes
0

001
000011

15



Example g = 2/3

Every word from W3 looks like

]_...]_0‘10'2 -+ 0y,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
0

001

000011

00000111

15



Example g = 2/3

Every word from W3 looks like

]_...]_0‘10'2 -+ 0y,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
0

001

000011

00000111
00000001111

15



Example g = 2/3

Every word from W3 looks like

]_...]_0‘10'2 -+ 0y,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
0

001

000011

00000111
00000001111
0000000011 111

15



Example g = 2/3

Every word from W3 looks like

1...10‘10'2 -+ 0y,
where g; is an element from the set of admissible suffixes.

Admissible suffixes
]
L Model polynomial Pyj3(y, z) = z + 2%y

001 encodes initial admissible suffixes 0
000011 and 001.

0000011 1 Spawning infix 00011 is encoded by
000000011 11 By
0000000011 111
14| ] zeros Admissible suffixes are constructed
m 1...11 iteratively by injecting the spawning
—— infix 000111 just after the last O in

i ones .
already constructed suffixes.



q | Model polynomial | Spawning infix g.f.
1/k z 2y
2 Z+zy zy?
2/3 z+ Z%y 23y?
3/2 z+ zy + Z%y? z2%y3
314 | z+ 22y + Z3y? z4y3
3/5 z+ 2%y + 24y? 253

Let g € Q" be represented by the irreducible fraction .

Spawning infix, 0---0011---1, has gf. z9y°.
S——

d c
c—1

Model polynomial is qug(y, z) = Z zl+léJy".
i=0



Generating function

Theorem 1

Let g € Q* be represented by the irreducible fraction §. The
generating function

o o )
Wyly, z) = Z Z wyiz"y'

r=0 j=0

where w;,; is number of words from Wy of length r + i
containing exactly r zeros and i ones is

1—zdyc
(1—y)(1—z9y° = Pqly, 2))’

where Pq(y, z) is the model polynomial of q.

Wqly, z) =



Linear recurrence with 0-1 coefficients

Let g € Q' be represented by the irreducible fraction 5. The
number of n-length binary words from Wg, ,, denoted by wp,
can be expressed as

Wp = Z Wn—j + Wn—(c+d), (1)
jeJ
where J is the set of powers from Pg(x, x).
For example, when g = %
we have P%(x,x) =x+x>+x* and J = {1,2,4}.

With appropriate initial conditions:)

18



q | Sequence Recurrence relation OEIS (with shifts)

1/511,23,4,5,6,7,9 12,16, 21, 27, ... Wp = Wp—1 + Wp—6 Compositions (or-
dered partitions) of
n into 1s and 6s.
A5708

1/4 11,2 3,4,5,6, 8,11, 15, 20, 26, 34, ... Wp = Wp—1 + Wp—s5 C. into 1s and 5s.
A3520

1/3 1,2 3,4,5 7,10, 14, 19, 26, 36, 50, ... Wp = Wp—1 + Wp—4a C. into 1s and 4s.
A3269

2/511,23,4,6,9, 13,18, 26, 38, 55, 79, ... Wp = Wp—1 + Wp—g + Wp—7 C.into 1s, 4s and 7s.
Not in OEIS.

1/2 11,2 3,4,6,9, 13,19, 28, 41, 60, 88, ... Wy = Wp_1 + Wp—3 Narayana's cows,
A930

3/5(1,23,5,8,12,19, 30, 46, 72, 113, 176, .. Wn = Wp—1 + Wp—3 + Wn—6 + Wn_g NEW

2/3 11,2 3,5,8,12,19, 30, 47, 74, 116, 182, ... Wp = Wp—1 + Wp_3 + Wp_5 C. into 1s, 3s and 5s,
A60961

3/4 | 1,2, 3,5, 8, 13, 21, 33, 53, 85, 136, 218, ... Wp = Wp—1 + Wp—3 + Wp—5 + W7 C. into 1s, 3s, 5s and
7s, A117760

4/5 11,2, 3,5,8,12,19, 30, 46, 72, 113, 176, ... Wp = Wp—1 + Wp—3 + Wp—5 + Wp—7 + Wp_g NEW

1 1,2, 3,5,8, 13, 21, 34, 55, 89, 144, 233, ... Wy = Wp_1 + Wp_2 Fibonacci numbers,
A45

5/4 1 1,2,4,7,13, 23, 42, 75, 136, 244, 441, 794, ... Wy = Wp_1 + Wp—2 + Wp—s + Wp_6 + Wp_g + Wp_g | NEW

4/3 | 1,2,4,7,13, 23, 42, 75, 136, 245, 443, 799, ... Wp = Wp—1 + Wn—2 + Wn—a + Wyp—6 + Wy—7 NEW

3/2|1,2,4,7,13, 23, 42, 76, 138, 250, 453, 821, ... Wy = Wp1+ Wp2+ Wypg + Wy 5 NEW

5/3 [ 1,2,4,7,13, 24, 44, 81, 148, 272, 499, 916, ... Wp = Wp—1+ Wn2 + W4+ Wy5+ Wy7+ wy_g | NEW

2 1,2,4,7,13, 24, 44, 81, 149, 274, 504, 927, ... Wp = Wp—1 + Wp—2 + Wp_3 Tribonacci numbers,
A73

5/2 | 1,2, 4,8, 15,29, 56, 107, 206, 396, 761, 1463, ... | Wy = Wp_1 + Wp_2 + Wp_3 + Wp_5 + Wn_6 + Wy—7 | NEW

3 1,2, 4, 8,15, 29, 56, 108, 208, 401, 773, 1490, ... | wp = Wp_1 + Wp—2 + Wyp_3 + Wp_4g Tetranacci numbers,
A78

4 1,2, 4, 8,16, 31, 61, 120, 236, 464, 912, 1793, ... | Wy = Wn—1 + Wp—2 + Wp—3 + Wp_a + Wp_s Pentanacci num-
bers, A1591

5 | 1,2 4,816, 32, 63, 125, 248, 492, 976, 1936, ... | Wy = Wp—1 + Wp—2 + Wyp—3 + Wy—4 + Wy_5 + Wy

Hexanacci numbers, 19

A1592


https://oeis.org/A5708
https://oeis.org/A3520
https://oeis.org/A3269
https://oeis.org/A930
https://oeis.org/A60961
https://oeis.org/A117760
https://oeis.org/A45
https://oeis.org/A73
https://oeis.org/A78
https://oeis.org/A1591
https://oeis.org/A1592

Ceneralized golden ratio
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Consider the following function

g lim —|Wq’"+1|

n—oo  |Wg pl

For g = 1, we get the golden ratio

(W1 is counted with the Fibonacci numbers).
For g = 2, it is the tribonacci constant.
For g =5/37

Forg=¢?7?
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Fractional generalization of the golden ratio

000e®*"*

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

. W n+1 .
lim M as a function of g.
n—oo |

an 21



Fractional generalization of the golden ratio

Golden ratio

1.8 1 eocsssssssossssetereeseee’

cesatestesecesesd

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

lim |Wq,n+1|

as a function of g.
n=00  [We,n|
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Fractional generalization of the golden ratio

Tribonacci constant

Golden ratio
0000000000000000000000000

1.8 1 eocsssssssossssetereeseee’

cesatestesecesesd

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

lim Dﬁéﬁﬂi}l

as a function of g.
n=00  [We,n|
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Fractional generalization of the golden ratio

2.2
Tribonacci constant
2.0 A
Golden ratio g
1 8 i m"'oomnmumo‘
E =161 mm““....m..
BE J— Golden golden ratio?
1.4 4 o
e iy
= ...
24—
1.04—+
0.8

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

lim —lwq’"+1|

as a function of g.
n=00  [We,n|
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Fractional generalization of the golden ratio

2.2
Tribonacci constant
2.0 A
Golden ratio g
1 8 i m".oomnmumo‘
E = 1.6 1 Everan I o
BE J— Golden golden ratio?
1.4 4 o
e iy
= ...
24—
1.04—+
0.8

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

lim |Wq,n+1|

as a function of g.
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Fractional

generalization of the golden ratio

Tribonacci constant

Golden ratio

"'oomnmnmo‘

cesatestesecesesd
—— Golden golden ratio?
ol . Wensa|
Does lim WVenial exists for any r € R*?
g n—oo  |W, |

T T T T
0.00 0.25 0.50 0.75

T T T T T
1.00 1.25 1.50 1.75 2.00
q

lim |Wq,n+1|

as a function of g.
n=00  [We,n|
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Fractional generalization of the golden ratio

2.2 4
Tribonacci constant
2.0
Golden ratio
0000000000000000000000000
1.8 A eocsssssssossssetereeseee’
7{. = 1.6 1 mm““""'“““"
== o Golden golden ratio?
TREE L
El K *1 . |Wr,n+1| . +
124 Does lim exists for any r e R™?
: 5 n—oo  [W, |
104+ Is it increasing for any r € R*?
0.8

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

lim |Wq,n+1|

as a function of g.
n=00  [We,n|
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Fractional generalization of the golden ratio

2.2
Tribonacci constant
2.0
Golden ratio
1.8 m'"mnmnmu.
7:':' 75 1.6 1 M'"M"'“““‘.
N J— Golden golden ratio?
TREE =
El ,".. . |Wr,n+1 | . +
124 Does lim exists for any r e R™?
: 5 n—oo  [W, |
04—+ s it increasing for any r € R*?
Is it discontinuous at every g € Q*?
0.8 J

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
q

lim —lwq’"+1|

as a function of g.
n=00  [We,n|
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Comecwres

1. We conjecture the existence of
a Gray code for g > 2,q € N.
It is proven for g = 1.

2. Forany r € R,
li |Wr,n+1|
tm

———— exists.
o R

w
3. The function r — lim @
n—co |Wpn|

is increasing.

4. This function is
discontinuous at every r € Q.

2727
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