Packing coloring and subsets preserving path distance

Nicolas Gastineau ${ }^{1}$ Benjamin Gras ${ }^{2}$ Sergey Kirgizov ${ }^{3}$ Mahmoud Omidvar ${ }^{4}$
${ }^{1}$ Université Paris-Dauphine
${ }^{2}$ ENS Lyon
${ }^{3}$ Université Bourgogne Franche-Comté
${ }^{4}$ Université du Littoral Côte d'Opale

JGA 2016

Packing coloring and subsets preserving path distance

Sergey Kirgizov

Introduction
Examples for X_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Packing coloring

Packing coloring and subsets

Graph $G=(V, E)$
Usual distance between vertices $d: V \times V \rightarrow \mathbb{N}$

Packing coloring
Function $c_{\rho}: V \rightarrow \mathbb{N}$ such that $\forall u \neq v \in V$ we have

$$
c_{\rho}(u)=c_{\rho}(v)=i \quad \Rightarrow \quad d(u, v)>i
$$

$\chi_{\rho}(G)$ - minimal number of colors.

Introduction
Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Historical notes

- Broadcast Chromatic Numbers of Graphs
[Goddard, Hedetniemi, Hedetniemi, Harris, Rall, 2003]
- An eccentric coloring of trees
[Sloper, 2004]
- On the packing chromatic number of Cartesian products, hexagonal lattice, and trees
[Brešara, Klavžarb, Rall, 2007]
Some complexity results
- Deciding whether $\chi_{\rho}(G) \geq 4$ is NP-complete
[Goddar et al.]
- Given a tree T and $k \in \mathbb{N}$ deciding whether $\chi_{\rho}(T) \geq k$ is NP-complete.
[Fiala, Golovach, 2010]

Historical notes 2

Packing coloring and subsets preserving path distance

Sergey Kirgizov

Introduction
Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Nicolas Gastineau, Ph.D. thesis, 2014

Expanding maps
and third result
Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Infinite path

Packing coloring and subsets preserving path distance

Sergey Kirgizov

Introduction

Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps
and third result
Additional results
[Goddard, Hedetniemi, Hedetniemi, Harris, Rall, 2003]

Summary of results and conjecture(s)

Conjecture(s)
discussion

Infinite square lattice

The packing chromatic number of the square lattice is at least 12
[Ekstein, Fiala, Holub, Lidický, 2011]

The packing chromatic number of the infinite square lattice is less than or equal to 15
"Using a SAT-solver on top of a partial previously-known solution...."
[Martin, Raimondi, Chen, Martin, 2015]

- 48×48 periodic solution with 16 colors (next slide...)
- 72×72 periodic solution with 15 colors

Introduction
Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Infinite trees

Packing coloring and subsets
preserving path distance

Sergey Kirgizov

Introduction

Examples for $\chi \rho$
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color
[Sloper, 2004]

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Our first result

Packing coloring and subsets

Theorem
$\chi_{\rho}\left(T_{2}\right)=7$
Proof.

- We known that $\chi_{\rho}\left(T_{2}\right) \leq 7$ [Sloper]
- We show $\chi_{\rho}\left(T_{2}\right)>6$ by brute-force over increasing sequence of induced subtrees

k	$T_{2, k}$	$\chi_{\rho}\left(T_{2, k}\right)$
0	\bullet	1
1	\ddots	2
2	\ddots	\bullet
3	\ldots	3
4	\ldots	4
5	\ldots	5
6	\ldots	6
7	\ldots	7

Sergey Kirgizov

Introduction
Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjectures)

Conjecture (s)
discussion

Starting from color k

Starting from color k

Another variant of packing coloring appears when we authorise only colors greater than k.
Packing coloring 2
Function $c_{\rho}: V \rightarrow \mathbb{N}$ such that $\forall u \neq v \in V$ we have

$$
\begin{gathered}
c_{\rho}(u)=c_{\rho}(v)=i \Rightarrow d(u, v)>i \text { and } \\
c_{\rho}(\cdot) \geq k
\end{gathered}
$$

$\chi_{\rho}^{k}(G)$ - minimal number of colors.
Asymptotically packing colorable
For any k we have $\chi_{\rho}^{k}(G) \leq f(k)<\infty$.
$f(k)$ is a packing function.

Infinite path is asymptotically packing colorable

Theorem

[Goddard, Hedetniemi, Hedetniemi, Harris, Rall, 2003]

1. $\chi_{\rho}^{k}\left(P_{\infty}\right) \leq 3 k+2$ if $k<34$
2. $\chi_{\rho}^{k}\left(P_{\infty}\right) \leq 3 k-1$ if $k \geq 34$

Proof.

1. By computer search.
2. By induction. The base case $\chi_{\rho}^{k}\left(P_{\infty}\right) \leq 3 k-1$ for $k=34$ is obtained by computer-based greedy coloration.
$\chi_{\rho}^{k}\left(P_{\infty}\right) \leq 3 k-1$

$\chi_{\rho}^{k+1}\left(P_{\infty}\right) \leq 3(k+1)-1$

Packing coloring and subsets

Sergey Kirgizov

Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Infinite square lattice is not asymptotically packing colorable
Infinite square (and also hexagonal) lattice L is not asymptotically packing colorable, since $\chi_{\rho}^{2}(L)=\infty$
Proof's idea
Define by $d\left(X_{k}\right)$ the proportion of a maximal subset that can be colored by a color k. Consider an optimistic scenario and show that $\sum_{i=2}^{\infty} d\left(X_{k}\right)<1$.

Figure 4: The sets X_{2} (2-packing), X_{3} (3-packing) and X_{4} (4-packing) in \mathbb{Z}^{2}.
[Gastineau, Kheddouci, Togni, 2015]

Infinite trees are not asymptotically packing colorable

T_{k} is an infinite k-ary tree.

Known results

- $\chi_{\rho}\left(T_{k}\right)=\chi_{\rho}^{1}\left(T_{k}\right)=\infty$ if $k \geq 3$ [Sloper, 2004]

Theorem
Infinite binary tree is not asymptotically packing colorable

Proof. On the next slides...

Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps
and third result
Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Binary tree is not asymptotically packing colorable

Introduction

Examples for χ_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for χ_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for χ_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for χ_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree covered by Bethe lattices

Packing coloring and subsets

Sergey Kirgizov

Introduction

Examples for x_{ρ}
First result
$X_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion
Colors represent Bethe lattices trees with 3 levels.

Binary tree is not asymptotically packing colorable. 2

1. T_{2} can be covered by several induced $T_{2, n}^{\prime}$
2. $\operatorname{diam}\left(T_{2, n}^{\prime}\right)=2 n$
3. $\left|T_{2, n}^{\prime}\right|=3 \cdot 2^{n}-2$

- At most $\frac{1}{3.2^{n}-2}$ vertices can be colored with color $2 n$ (or with color $2 n+1$).
- colors $2,4, \ldots \sum_{n=1}^{\infty} \frac{1}{3 \cdot 2^{n}-2}<0.44$
- colors $3,5, \ldots \sum_{n=1}^{\infty} \frac{1}{3 \cdot 2^{n}-2}<0.44$
- colors 2,3,5,6 $\ldots 2 \sum_{n=1}^{\infty} \frac{1}{3 \cdot 2^{n}-2}<0.88$

Thus, in optimistic scenario the sum of density of all colored vertices is less than 1. It means, that we cannot color using only these colors.

Expanding maps and packing coloration

(Eventually) expanding maps

H, G are two metric spaces (graphs equipped with standard distance, for example).
$\phi: H \rightarrow G$ is a expanding map if $d_{H}(u, v) \leq d_{G}(\phi(u), \phi(v))$

Immediately we have
A packing coloration of H is also a packing coloration of $\phi(H) \subset G$

Introduction
Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Path (distance preserving) decomposition

Path distance preserving subset

Packing coloring and subsets

If $\psi: P_{\infty} \rightarrow G$ is a expanding map from an infinite path to a graph G, then $\psi\left(P_{\infty}\right)$ preserves a path distance.

- We know that P_{∞} is asymptotically packing colorable, moreover $\chi_{\rho}^{k}\left(P_{\infty}\right) \leq 3 k+2$ for any k.

Introduction

Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Path (distance preserving) decomposition

Path distance preserving subset

Sergey Kirgizov
If $\psi: P_{\infty} \rightarrow G$ is a expanding map from an infinite path to a graph G , then $\psi\left(P_{\infty}\right)$ preserves a path distance.

- We know that P_{∞} is asymptotically packing colorable, moreover $\chi_{\rho}^{k}\left(P_{\infty}\right) \leq 3 k+2$ for any k.

Theorem

If the set of vertices of G is a finite disjoint union of subsets that preserve a path distance

$$
G=\biguplus_{i \in I,|| |<\infty} \psi_{i}\left(P_{\infty}\right)
$$

then G is asymptotically packing colorable, moreover

$$
\chi_{\rho}^{k}(G) \leq f_{\| \mid}(k)
$$

where $f_{1}(k)=3 k+2$ and $f_{n}=f\left(f_{n-1}(k)+1\right)$.

Decomposition on paths

An example
Packing coloring and subsets

An example $C_{*}=\bigcup_{n \in \mathbb{N}} C_{n}$

1

- we color lower path by 12131213...
- we color upper path by $3 \cdot 4+2$ colors starting from the color 4.

$$
\chi_{\rho}\left(C_{*}\right) \leq 3+3 \cdot 4+2 \leq 17
$$

Introduction
Examples for x_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Consequences, additional results

- Infinite k-ary tree ($k \geq 2$) is not decomposable into finite number of infinite paths.
- Square and hexagonal lattices are not decomposable into finite number of infinite paths.
- If a graph can be decomposed, the minimal number of paths is an interesting parameter, denoted by $p_{\infty}(G)$.
- $p_{\infty}\left(\bigcup_{n \in \mathbb{N}} C_{n}\right)=2$
- Let S_{k} be an infinite star with k edges, $p_{\infty}\left(S_{k}\right)=\left\lceil\frac{k}{2}\right\rceil$
- Let P_{∞}^{k} be a graph with vertex set \mathbb{Z} and edge set $\left\{a b||a-b| \leq k\}\right.$, we have $p_{\infty}\left(P_{\infty}^{k}\right) \leq k$

Introduction
Examples for χ_{ρ}
First result
$\chi_{\rho}\left(T_{2}\right)=7$
Starting from color k

Second result
$\chi_{\rho}^{2}\left(T_{2}\right)=\infty$
Expanding maps and third result

Additional results
Summary of results and conjecture(s)

Conjecture(s)
discussion

Conclusion

1. Packing coloring number of binary tree is 7 .
2. Binary tree is not asymptotically packing colorable.
3. Path decomposition into finite number of paths implies asymptotically packing colorability.
4. Minimal number of paths in path decomposition is an interesting parameter.
5. Conjecture: converse of 3 for connected graphs

Conjectures

1. Does the asymptotic packing colorability of a connected graph implies the existence of decomposition into finite number of paths ?
2. Is there a graph G such that $\chi_{\rho}^{1}(G)<\infty, \chi_{\rho}^{2}(G)<\infty$ but $\chi_{\rho}^{3}(G)=\infty$?
3. Does $\chi_{\rho}^{2}(G)=\infty$ imply $\chi_{\rho}^{k}(G)=\infty$ for any $k>2$
4. Does the packing chromatic number grow when we take an infinite graph G and we glue the root of the one-way infinite path to a node in "a general position" (e.g. in the "middle" of G) ? $\chi_{\rho}\left(\boldsymbol{G}+\boldsymbol{P}_{\text {one way }} \infty\right) \geq \chi_{\rho}(\boldsymbol{G})+1$
5. Does 4 imply 1 ?

Merci

Slides: http://kirgizov.link/talks/jga-2016.pdf

