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Abstract: Trees are fundamental data structure for many areas of computer science and system
engineering. In this report, we show how to ensure eventual consistency of optimistically replicated
trees. In optimistic replication, the different replicas of a distributed system are allowed to diverge
but should eventually reach the same value if no more mutations occur. A new method to ensure
eventual consistency is to design Conflict-free Replicated Data Types (CRDT).
In this report, we design a collection of tree CRDT using existing set CRDTs. The remaining
concurrency problems particular to tree data structure are resolved using one or two layers of
correction algorithm. For each of these layer, we propose different and independent policies. Any
combination of set CRDT and policies can be constructed, giving to the distributed application
programmer the entire control of the behavior of the shared data in face of concurrent mutations.
We also propose to order these trees by adding a positioning layer which is also independent to
obtain a collection of ordered tree CRDTs.

Key-words: Distributed System, Eventual Consistency, CRDT, Optimistic Replication, Data
Consistency, Tree
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Arbres ordonné et non ordonné en CRDT2

Résumé : Les arbres sont une structure de donnée fondamentale dans beau-
coup de domaines de l’informatique théorique et de l’ingénierie logicielle. Dans
ce rapport, nous montrons comment assurer la consistance d’arbres répliqués
de manière optimiste. Dans la réplication optimiste, les différentes répliques
d’un système distribué peuvent passer par différents états intermédiaires avant
de converger. Une nouvelle méthode pour assurer la convergence est de définir
des CRDT (Conflict-free Replicated Data Types).

Dans ce rapport, nous proposons une collection de CRDT structure d’arbres
en utilisant les CRDT ensembles déjà existants. Nous assurons la cohérence de
la structure de données en présence de mutations concurrentes, en utilisant un
algorithme de réparation en une ou deux phases. Pour chacune de ces phases,
nous proposons plusieurs politiques de réparations indépendantes. Nous don-
nons ainsi le choix au développeur de l’application distribuée le contrôle total
sur le comportement de l’arbre partagé lors de modifications concurrentes.

Enfin, nous proposons d’utiliser des résultats connus et nouveaux sur les
CRDT séquences ordonnés, pour ajoutant des informations de positionnement
sur les noeuds ou les arêtes de l’arbre. Nous définissons ainsi des CRDT de
structure d’arbres ou les noeuds frères sont ordonnées.

Mots-clés : Consistance à terme, CRDT, Réplication optimiste, Arbres,
Consistance des données

2Ce travail est aussi un délivrable de l’ANR ConcRDanT (ANR-10-BLAN-0208).



Abstract unordered and ordered trees CRDT1 3

This report is structured as follows. Section 1 describes the notion of
Conflict-free Replicated Data Types (CRDT). We describe more precisely the
different solutions to build a set CRDT, since all our tree CRDTs are based on
sets. Section 2 constructs several tree CRDTs using the graph theory defini-
tion of a tree : a set of node and a set of oriented edge with some particular
properties. To manage these sets we use set CRDTs; and to ensure the tree
properties in case of concurrent modifications, we build two layers of correction
algorithms. The first layer ensures that the graph is rooted while the second en-
sures uniqueness of paths. For each layer, we propose different and independent
policies. Section 3 also constructs several tree CRDTs but using word theory
to define the set of paths in a tree. Since such paths are unique, this kind of
tree CRDT is constructed using a set CRDT and a connection layer. Section 4
proposes to define ordered tree CRDT by adding element positioning in tree
CRDTs described in previous sections. These positions come from well-known
sequential editing CRDTs. To make positions compatible with any tree CRDT
construct, we define a new sequential editing CRDT called WOOTR. Finally,
we conclude in Section 5.

1 CRDT definition

Replication is a key feature in any large distributed system. When the replicated
data are mutable, the consistency between the replicas must be ensured. This
consistency can be strong or eventual. In the strong consistency model (aka
atomic or linear consistency), a mutation seems to occurs instantaneously on
all replicas. However, the CAP theorem [4] states that is impossible to achieve
simultaneously strong consistency (C), availability (A) and to tolerate network
partition (P).

In the eventual consistency model, the replicas are allowed to diverge, but
eventually reach the same value if no more mutations occur. A mechanism
to obtain eventual consistency is to design Conflict-free Replicated Data Types
(CRDT) [12]. CRDT can be state-based or operation-based. In state-based
CRDTs – aka Convergent Replicated Data Type (CvRDT) – the data are com-
puted by merging the state of the local replica with the state of another replica.
Eventual consistency is achieved if the merge relation is a monotonic semilat-
tice. In the operation-based CRDTs – aka Commutative Replicated Data Type
(CmRDT) – the data is computed by executing remote operations on the local
replica. Eventual consistency is achieved if operations are delivered in certain or-
der and if the execution of the non-ordered operations commutes. For instance,
using causal order, the execution of concurrent (in Lamport’s definition [5])
operations must commutes.

1.1 Set

In this section we show how is defined a set CRDT. We define a data type by
a set of update operations and their pre-condition and post-conditions. The
precondition is local (i.e. it must only be valid on the replica that generates the
update) while the postconditions are global (i.e. it must be valid immediately
after the update).

RR n° 7825



Abstract unordered and ordered trees CRDT2 4

Consider the operations add(a) and rmv(a) for a set data type. In a se-
quential execution, the “traditional” definition of the pre- and post-conditions
are

• pre(add(a), S) ≡ a /∈ S

• post(add(a), S) ≡ a ∈ S

• pre(rmv(a), S) ≡ a ∈ S

• post(rmv(a), S) ≡ a /∈ S

In case of concurrent updates, the post-conditions add(a)||rmv(a) conflict.
Indeed for a CvRDT, we cannot a have a merge that ensure the both post-
conditions. For a CmRDT, the execution of the two updates in two different
orders either leads to two different set (Figure 1), either not ensures the post-
conditions.

Figure 1: Set with concurrent addition and remove [11]

Thus, a set CRDT has different global post-conditions in order to take
into account the concurrent updates while ensuring eventual consistency. Each
CRDT has a payload which is an internal data structure not exposed to the
client application, and lookup, a function on the payload that returns a set to
the client application. For a set CRDT, the pre-conditions must be locally true
on the lookup of the set.

Different set CRDTs [11] are the G-Set, 2P-Set, LWW-Set, PN-Set, and
OR-Set. They are described below.

1.2 G-Set

In a Grow Only Set (G-Set), elements can only be added and not removed. The
CvRDT merge mechanism is a classical set union.

1.3 2P-Set

In a Two Phases Set (2P-Set), an element may be added and removed, but never
added again thereafter. The CvRDT 2P-Set (known as U-Set [15]) payload
consists in two add-only set A and R. Adding an element adds it to A and
deleting en elements add it to R. The lookup returns the difference A \R. The
set R is often called the tombstones set.

The CmRDT 2P-Set does not require tombstone but causal delivery; thus,
a remove is always received after the addition of the element.

RR n° 7825



Abstract unordered and ordered trees CRDT3 5

1.4 LWW-Set

In a Last Writer Wins Set (LWW-Set), each element is associated to a timestamp
and a visibility flag. A local operation adds the element if not present and
updates the timestamp and the visibility flag (true for add, false for rmv). The
CvRDT merge mechanism makes the union of all elements and for each element
the pair (timestamp, flag) of the maximum timestamp.

In the CmRDT, the execution of a remote operation updates the element
only if timestamp of the operation is higher than the timestamp associated to
the element. The both CRDTs requires tombstones and the lookup returns
elements which have a true visibility flag.

Figure 2: Last Writer Wins Set : LWW-Set [11]

1.5 C-Set

In a Counter Set (C-Set), each element is associated to a counter. Let k be the
value of the counter of an element. A local add can occurs only if k ≤ 0 and sets
the counter to 1 (δ = −k + 1). A local rmv can occurs only if k > 0 and sets
the counter to 0 (δ = −k). The CvRDT (also call PN-Set) payload contains
the set of element, and for each element a set P of increments and a set N of
decrements. A local add, resp. rmv, adds |δ| element in P , resp. N . The merge
operation is the union of the sets. The lookup contains elements with |P | > |N |.

In the CmRDT, each operation contains the difference δ obtained during
local execution. The remote operation execution adds δ to the counter. Element
with a counter k = 0 can be removed, the others must be kept. The lookup
contains elements with k > 0.

Figure 3: Counter Set : C-Set [11]

1.6 OR-Set

In a Observed Remove Set (OR-Set) each element is associated to a set of unique
tag. A local add creates a tag for the element and a local rmv removes all the tag
of the element. The CvRDT contains the set of element, and for each element
a set T of tags added and a set R of tags removed. The merge operation is the
union of each set. The lookup contains elements with T ∩R 6= {}.

RR n° 7825



Abstract unordered and ordered trees CRDT5 6

In the CmRDT, each operation contains the tag(s) added or removed. Since
causal ordering is ensured and since tag are unique, the removed tag (and el-
ement with no tag) can be removed in the payload. The lookup contains the
elements of the payload.

Figure 4: Observed-Remove Set : OR-Set [11]

1.7 Comparison

From the application point of view, all set CRDTs provide a set lookup and
the same pre-conditions on operations (except for G-Set, since the application
cannot remove an element and for 2P-Set, since application cannot re-add an
element). They also provide the same post-conditions of the local replica. The
behavior of the presence of the elements in the lookup can be resumed as follow :

LWW-Set an element appears in the lookup if and only if the operation with
the higher timestamp is an add.

C-Set an element appears in the lookup if and only if the sum of the add op-
erations counters is greater than the sum of the rmv operations counters.

OR-Set an element appears in the lookup if and only if the tags associated by
add operations are not all present in rmv operations.

2 Graph Trees

According to standard graph theory definition, a tree – more precisely an ar-
borescence – is a connected directed acyclic graph in which a single node root
is designated as the root and there is a unique path from root to any other
node [2]. A tree is thus a ordered pair G = (V,E) with V a set of nodes and
E ⊆ V × V a set of directed edges. If (x, y) ∈ V , we say that y is a child of
x. Since G have no directed cycle, E∗, the transitive closure of E, is a partial
strict order on V . There is a path from x to y if and only if (x, y) ∈ E∗.

We define subtrees in a more general manner than usual by including edges
directed to the subtree. In an actual tree there is only one such edge.

Definition 1. An ordered pair (N,F ) is a subtree of the tree (V,E) and is rooted
by n ∈ N if N ⊂ V , F ⊆ E and (N,F \ ((V \N)×N)) is a connected directed
acyclic graph with a unique path from n to any other node and if (V \N,E \F )
is a tree.

We consider that the graph can be modified trough two minimal operations
add and rmv. The operation add(n,m) adds a node n in the graph under

RR n° 7825



Abstract unordered and ordered trees CRDT6 7

the node m and the operation rmv(N,F ) removes the set of nodes and edges
appearing in a subtree. Other operations, e.g. adding a whole subtree, or
removing a node while moving all its children under the father of n, can be
defined upon these minimal operations4. We have the following formal definition
of the sequential operations on a tree. For sake of simplicity, we consider that
the root of the tree is always present and immutable.

• pre(add(n,m), (V,E)) ≡ n /∈ V ∧m ∈ V

• post(add(n,m), (V,E)) ≡ n ∈ V ∧ (m,n) ∈ E

• pre(rmv(N,F ), (V,E)) ≡ subtree((N,F ), (V,E))

• post(rmv(N,F ), (V,E)) ≡ N ∩ V = {} ∧ F ∩ E = {}.

With such pre- and post-conditions we can ensure that the graph (V,E) stays
a tree in case of a sequential modifications. However, in case of a concurrent
modifications, these post-conditions conflicts if a node is concurrently added
and removed, if a node is concurrently deleted while a children is added, or if a
node concurrently added under to different fathers.

2.1 Concurrent addition and deletion of the same element

The post-conditions of add(n,m)||rmv(N,F ) with n ∈ N conflicts, i.e. a node
cannot be concurrently added and removed. Indeed, as for a set, the post-
condition of add and rmv operations cannot be globally ensured while ensuring
convergence.

We can uses sets CRDT to bypass the conflict. By using sets CRDT to
handle both sets of nodes and edges, we obtain a data type (V,E) that is
obviously eventually consistent. Such trees CRDT have the following behavior.

GG-Tree In a Grow-only Graph Tree (GG-Tree) nodes and edges can only be
added and never removed. A GG-Tree uses G-Sets as the sets of nodes V
and edges E.

2G-Tree In a Two-phases Graph Tree (2G-Tree) nodes and thus edges can
only be added once. A 2G-Tree uses the lookup of a 2P-set as the set of
nodes V . There is no need for using set CRDT for the edges since a new
edge is only added with a new node. Thus, an edge cannot be added and
removed concurrently.

LG-Tree In a Last-writer-wins Graph Tree (LG-Tree) a node, or a edge, ap-
pears in the lookup if and only if the operation with the higher timestamp
applied on it is an add. LG-Tree uses the lookup of LWW-element-Sets
as the sets of nodes V and edges E. The operations become add(n,m, t)
and rmv(N,F, t). The execution of the operations consists in updating
the timestamp and the visibility flag if the operation timestamp is newer
that the attached timestamp.

4For instance, adding a whole subtree consists of a list of add operations; remove a node
while keeping its children consists of a list of rmv and a list of add.

RR n° 7825
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CG-Tree An Counter Graph Tree (CG-Tree) a node or a edge appears in the
lookup if and only if the sum of add operations applied on it is greater
than the sum of rmv operations. A CG-Tree uses the lookup of C-Sets as
the sets of nodes V and edges E. The operation add and rmv associate an
increment to each element appearing in these operation. The execution of
the operation applies this positive or negative increment to the targeted
elements.

OG-Tree In an Observed-remove Graph Tree (OG-Tree), a node or a edge
appears in the lookup if and only if the tags associated by add operations
applied on it are not all removed by rmv operations. An OG-Tree uses the
lookup of OR-Sets as the sets of nodes V and edges E. The operation add
associates a unique tag and rmv associates a set of tag to each element
appearing in these operation. The execution of the operation adds or
removes the tag(s) to the targeted elements.

2.1.1 Set lookup

From all the above tree CRDTs, we can obtain (VL, EL) a pair of lookup sets
which is eventually consistent since lookup of the set CRDTs is eventually con-
sistent. However, in case of concurrent modifications, this pair (VL, EL) is not
a graph since EL may contain edge on nodes not in VL. For instance in the
LG-Tree, if the operations add(n,m, t) and rmv(N,F, t′) with n ∈ N and t′ > t
are generated concurrently, we get (m,n) ∈ EL while n /∈ VL.

The pair (VL, EL ∩ (VL × VL)) is a graph but may not be a tree. It can be
non-connected if a replica adds a node under m and another replica removes
m concurrently. Also, there can be several paths between the root and a node
since two replicas can add concurrently a node under two different fathers.
Moreover, such a graph may contains cycles if, for instance, a replica generates
add(x, root) followed by add(y, x) and another replica generates concurrently
add(y, root) followed by add(x, y).

Figure 5: Cycle generated by concurrent additions

RR n° 7825



Abstract unordered and ordered trees CRDT8 9

We propose to compute a lookup from the pair (VL, EL) on order to obtain
a lookup which is an eventually consistent tree. In the following sections, we
propose different policies to firstly reconnect or drop the isolated components to
obtain a rooted graph, and to secondly to express a tree from the rooted graph.

2.2 Connection policy

The operations add(n,m)||rmv(N,F ) with m ∈ N and n /∈ N conflicts since a
naive lookup of the underlying sets CRDTs of nodes and edges is a non connected
graph. However, several solutions can be designed to produce a graph which
is rooted, i.e. with at least one path from the root to any other node. The
solutions can be to “skip” such add, to “recreate” the removed ascendant(s),
or to place such added nodes “somewhere” in the tree (for instance under the
root). We compute a rooted graph (VC , EC) directly from the lookup VL and
EL of the supporting sets CRDTs.

We note EG = (EL ∩ (VL × VL)). We call a orphan node, a node n in VL
such that (root, n) /∈ E∗G. Since a node is always added with an edge directed
to it, an orphan node n has at least one edge in (m,n) ∈ EL directed to it; if
m /∈ VL, we call (m,n) an orphan edge, elsewhere m and n are parts of the same
orphan component.

To compute (VC , EC), we start by adding all non-orphan nodes and the edges
between them in (VL, EL). Then, we treat the orphan nodes in VL. Considering
each orphan node n, we can apply the following “connection” policies :

skip drops the orphan node. This algorithm consists simply on a graph traversal
starting from the root and is in Θ(|EL|+ |VL|).

Figure 6: skip policy

reappear recreates all paths leading to orphans components. We add all edges
(n, y) such that y ∈ VL. For each orphan edge (x, n) we add all paths
(nodes and edges) that have ever existed between root and y. This policy
requires to keep as tombstones all the edge ever added to the graph. This
algorithm is in Θ(|E|+ |V |).

RR n° 7825
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Figure 7: reappear policy

root places the orphan components under the root. We add all edges (n, y) such
that y ∈ VL. For each orphan edge (x, n), we add (root, n). This algorithm
consist in modification of all orphans edges : we replace inexistent node
by root. This algorithm complexity is Θ(|EL|+ |VL|).

Figure 8: root policy

compact places the orphan components under the connected node that have
ever a path to it. We add all edges (n, y) such that y ∈ VL. For each orphan
edge (x, n), we add (z, n) for all z which is a non-orphan node such that a
path that does not contains non-orphan nodes have ever existed between z
and x. This policy requires to keep as tombstones all the edge ever added
to the graph. Let connectSet be a set associated on all node. By default
this set is empty. We execute the follow algorithm with node previously
deleted and connected to orphans edges.

f unc t i on getConnected ( node n)
i f n i s not orphan then

return {n}
e n d i f
i f n . connectSet i s empty then

f o r n ’ in f a t h e r node
n . connectSet . add ( getConnected (n ’ ) )

re turn n . nonnectSet ;
e l s e

RR n° 7825
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Figure 9: Compact policy

re turn n . connectSet
end i f

Finally for all orphan edge we add all edges link connected from each
element returned by algorithm to the component node.This algorithm is
in Θ(|E|+ |V |)

Using any of the above policies ensures that (VC , EC) is a rooted graph for
any tree CRDT. Such a graph is eventually consistent and there is at least one
path from root to each other node.

The reappear and compact policies require to keep all edges that have ever
existed as tombstones. In some set CRDTs approaches (such as CmRDT LWW-
Set or all set CvRDTs), these tombstones already exist in the payload. In the
compact policy, we can store only the set of node that have ever been accessible
from one node.

2.3 Mapping policy

The operations add(n,m)||add(o, p) with n = o and m 6= k conflict. A node
cannot be concurrently added under two different nodes, since the graph may
contains different paths to a node and directed cycles. To obtain a tree we
start from the rooted graph (VC , EC) and we apply one of the three following
“mapping” policies.

several : We construct all the acyclic paths in the graph. Thus, copies of the
node can appear in different places in the tree. Remove a copy of the node
removes all the others. The algorithm is a simple depth-first that begins
on root node. For each node, the algorithm is

1. Mark the node.

2. Construct a list l composed of recursive calls on all unmarked children
nodes.

3. Unmark the node.

4. Returns a tree composed of the node and the list l of children

Obtaining a description of all simple paths in a directed graph can be
computed using O(|V |3) matrix operations. Such a tree contains up to
|V |! edges in case of a complete graph.
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one : This policy adds in the tree each node in VL only once. Thus, the
algorithm must make a choice on the edges :

newer : The “newer” variation needs a timestamps on edges to select
the newer. This is adapted to LG-Tree that already has such times-
tamp11. We construct a Maximal Spanning Tree (MST) with the
edges sorted by timestamp. We will not obtain a tree composed with
only newest edges since such edges may constitute a cycle. But we
will obtain a tree with the maximal sum of timestamp. This tree will
be rooted since root has no edge directed to it and must be included
in the MST. Building a MST in a directed graph can be achieved in
Θ(|E|+ |V |log|V |) [3].

higher : This variation is designed for CG-Tree and OG-Tree. We con-
struct a MST maximising edges counters or edge tags numbers.

shortest : This variation can be used for all type of tree. For each node
we select the shortest path to it. A Breath-first algorithm can be
used to produce the tree in Θ(|E|+ |V |).

zero : The zero policy removes all subtrees rooted by nodes which have more
than one edge directed to them. For each node the algorithm checks the
number of input edges. The algorithm traverses the graph starting from
the root but does not add nodes with an in degree greater than two and
does not visit its children. The algorithm is in Θ(|V |+ |E|).

2.4 Discussion on graph trees

Thus, we can obtain a lookup using a graph structure managed by set CRDTs.
This lookup function is composed in three phases. The first phase is the lookup
of the underlying set CRDT. The second phase computes a rooted graph. The
third phase expresses a tree from the rooted graph. Such data types are ob-
viously CRDTs since the underlying sets are eventually consistent, and since
the lookup tree is computed with deterministic policies12, this lookup is also
eventually consistent.

However, depending on the policy chosen, the client application can observe
moves on the lookup tree. For instance, using a root policy, if a removed father
is added again, its orphan son will move from the root to its original place.

We call monotonic policy, a policy where add and rmv operations do not
move an existing node in the lookup. The non-monotonic policies are : root,
compact and all one variations. The monotonic policies are skip, reappear, zero
and several.

The lookup function works after each modification of the tree. The com-
plexity of this function could be up to factorial for the several policy. So,
some optimizations are useful. We call incremental lookup function, a lookup
function which reuses an previous calculus to avoid recompute entire tree. For
example, in the reappear policy, when an orphan node should be added, the
incremental lookup function adds to the tree the several/one/zero paths leading
to this node. On the other hand, when the father of an orphan node is added,

11This is also adapted to OG-Tree if tag are constructed with clocks
12We assume existence of a total order between nodes to ensure determinism of graph

algorithms.
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the other reappeared paths must be removed of the lookup. Finally, when an
orphan node is removed, the reappeared paths should disappear. Such incre-
mental versions have the same worst-case complexity than non-incremental ones
but are slightly more efficient. However, eventual consistency of the lookup is
less straightforward to ensure in such incremental versions.

2.5 A special case : 2G-Tree

A two phases graph tree (2G-Tree) uses a 2P-set [11] as the set of nodes V .
A 2P-Set consists in defining unique elements that can only be added once on
all replicas. Thus, node and edge cannot be added and removed concurrently.
The other main advantage of the 2G-Tree is that the conflict add||add does not
occurs since a node can only be added once. Thus, 2G-Tree do not require any
mapping policy.

In a 2G-Tree, the conflict add(n,m)||rmv(N,F ) with m ∈ N and n /∈ N
can be resolved using solutions presented above. Assuming that node can be
found in constant time (using hash table), the skip policy can be computed
incrementally in Θ(1) time. Indeed, the remove of a node consists in remove of
the entire subtree, and addition of an orphan node has no effect. Moreover a
CvRDT 2G-Tree can send constant size messages for remove : rmv(n) with n
the root of the subtree. The reappear and compact policy can be computed in
Θ(|V |) since there is only one path, of size at most |V |, leading to a given node.
Finally, in the root policy, the addition of a node is always in Θ(1) time.

2.6 EDGE trees

Since a node is always added with an edge directed to it, one can represent a
tree using only edges. Such a choice leads to a data structure we call edge tree.
Given a finite or infinite set of nodes V , an edge tree is a subset of all ordered
pairs. An edge tree has a root with no edge directed to it, and for all edge, it
exists one unique parent edge. A subtree is rooted by a node and include the
edge14 directed to this node and a set of connected edges.

Definition 2. An edge tree T rooted by root is a subset of V × V such that
for all (x, y) ∈ T either x = root, or there exists a unique z ∈ V such that
(z, x) ∈ T .

The set S is a subtree rooted by n ∈ V of T if S ⊂ T , ∃(x, n) ∈ S, ∀(a, b) ∈
S. b 6= n =⇒ (n, b) ∈ S∗ and T \ S is an edge tree.

We have the following formal definition of the sequential operations on an
edge tree.

• pre(add(n,m), T ) ≡ ∃(z,m) ∈ T

• post(add(n,m), T ) ≡ (m,n) ∈ T

• pre(rmv(S), T ) ≡ subtree(S, T )

• post(rmv(S), T ) ≡ S ∩ T = {}.
14In case of concurrent modifications, their can be several such edges.
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As for graph tree, the post-conditions of add and rmv conflict and an edge
tree CRDT uses a set CRDT to handle the set of edges. We can apply the same
connecting and mapping policies than for graph tree to compute a tree lookup
of the CRDT set. We simply consider that a node belong to a tree if and only
if it appears on an edge of tree.

Such GE-Tree, 2E-Tree or OE-Tree will have exactly the same behavior than
respectively GG-Tree, 2G-Tree and OG-Tree. Indeed, in such trees, we cannot
remove edges (GG-Tree), or we cannot have an edge directed to a removed node
(2G-Tree and OG-Tree). Thus, GE-Tree, 2E-Tree and OE-Tree are optimiza-
tions of their respective xG-Tree.

The LE-Tree and CE-Tree have a different behavior than LG-Tree and CG-
Tree. Indeed, let consider a first replica that inserts a node x under a node y,
and then removes x, while a second replica insert x under a node z. Depending
on the timestamps (LG-Tree) or on if another replica removes (y, x) concurrently
(CN-Tree), the node x – and thus (z, x) – can appear or not in the lookup. In
LE-Tree and CE-Tree, (z, x) appears in the lookup.

3 Word trees

In this section we introduce word trees, another data structure to manage con-
currently modified trees. A word represents a path in the tree, a tree can be
defined as a set of words : the set of paths existing in this tree. We use the
standard definitions about words. Let Σ be a finite – or infinite – ordered al-
phabet, a word is a finite sequence of elements from Σ. The length of a word
w, noted |w| is the number of elements of w. We denotes ε the empty word.
The concatenation vw is the word formed by the joining end-to-end the words
v and w. The set of all strings over Σ of any length is the Kleene closure of Σ
and is denoted Σ∗.

We define a tree as a set of the words representing all the paths in the tree.
Since all the paths are present in the set, any prefix of a path is also a path of
the tree. The empty word ε is the root of the tree.

Definition 3. A word tree T is a subset of Σ∗, such that ε ∈ T and ∀p, e ∈
Σ∗. pe ∈ T =⇒ p ∈ T .

A subtree is defined as complete set of paths with a common prefix.

Definition 4. In a tree T , a subtree P is a subset of T such that T \ P is a
tree and such that ∃w ∈ T. ∃S ⊂ Σ∗. P = {ws|s ∈ S} and S is a tree.

As for graph tree, there is two operations to modify a word tree. The
operation add(n, p) with n ∈ Σ and p ∈ Σ∗ adds a new path and rmv(P )
removes the set of paths representing a subtree.

• pre(add(n, p), T ) ≡ p ∈ T ∧ pn /∈ T

• post(add(n, p), T ) ≡ pn ∈ T

• pre(rmv(P ), T ) ≡ P ⊂ T ∧ subtree(P, T )

• post(rmv(P ), T ) ≡ P ∩ T = {}

RR n° 7825



Abstract unordered and ordered trees CRDT17 15

With such pre- and post-conditions, we can ensure that the set T is sill a
tree in case of sequential modifications. In case of concurrent modifications,
word trees differ from graph trees since only add||del conflicts occurs.

3.1 Concurrent addition and remove of the same element

A for mathematical set, the post-conditions of add(n, p) and rmv(P ) with np ∈
P conflicts since convergence cannot be achieved. As for graph trees, we can use
set CRDT to bypass the conflict. The obtained tree CRDT have the following
behavior :

GW-Tree a path can only be added and never removed.

2W-Tree a path can only be added once. Such a CRDT has the same behavior
than the 2G-Tree and 2E-Tree.

LW-Tree a path appears in the lookup if and only if the operation with the
higher timestamp applied on it is an add.

CW-Tree a path appears in the lookup if and only if the number of add oper-
ations applied on it is greater than the number of rmv operations.

OW-Tree a path appears in the lookup if and only if the tags associated by
add operations applied on it are not all removed by rmv operations.

All the above data types are obviously eventually consistent. But the lookup
presented must be a tree even in case of the concurrent addition of a node and
remove of its father.

3.2 Concurrent addition of a path and remove of the prefix

As for graph and edge trees, the naive execution of operations add(n, p) and
rmv(P ) with p ∈ P produce a set of path which is no longer a tree. Thus we
need to compute a lookup which is a tree. We compute a lookup tree LT from
the set of path LS obtained from the lookup of the supporting set CRDT.

We call a orphan path, a path in LS that has a prefix which is not in LS.
We start by adding all non-orphan paths of LS to LT . Then, we treat the
orphan paths in LS in length order (shortest first, then Σ order). Considering
each orphan path a1a2 . . . an ∈ LS with ∀i ∈ [1, n]. ai ∈ Σ, we can apply the
following connection policies :

skip drops the orphan path.

reappear recreates the path leading to the orphan path. We add all a1 . . . aj
with j ∈ [1, n].

root places the orphan subtree under the root. We add aj . . . an to LT with j
such that a1 . . . aj−1 /∈ LS and ∀k ∈ [j, n], a1 . . . ak ∈ LS.

compact places the orphan subtree under its longest non-orphan prefix. We add
a1 . . . amaj . . . an to LT with j and m such that m < j and a1 . . . am ∈ LT
and a1 . . . am+1 /∈ LS and a1 . . . aj−1 /∈ LS and ∀k ∈ [j, n], a1 . . . ak ∈ LS.
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Example 1. For a lookup LS = {ε, a, ab, ac, abcd, abcde, abcdefg}, the orphans
path are {abcd, abcde, abcdefg} and we obtain LT equal to :

skip {ε, a, ab, ac}

reappear {ε, a, ab, ac, abc, abcd, abcde, abcef, abcdefg}

root {ε, a, ab, ac, d, de, g}

compact {ε, a, ab, ac, abd, abde, abdeg}

Using any of the above policies ensures that the lookup trees presented to
the client by any CRDT tree are eventually consistent.

Theorem 1. The lookup sets LT computed using a skip, root, reappear, or
compact policy are tree and are eventually consistent.

Proof. Since the set of paths LS is eventually consistent, and since the paths are
treated is the same order and since each policy is deterministic, the computed
set of paths LT is eventually consistent.

Set of path LT is a tree since :

skip there is no orphan path in LT .

reappear we add an orphan path in LT with all its prefixes.

root a suffix aj . . . an is added to LT only if ∀k ∈ [j, n], a1 . . . ak ∈ LS. Thus,
all the prefixes aj . . . ak were also added to LT .

compact a path a1 . . . amaj . . . an is added to LT only if ∀k ∈ [j, n], a1 . . . ak ∈
LS. Thus all the prefixes a1 . . . amaj . . . ak were also added to LT .

Computing a lookup tree LT every time the lookup set LS is modified
ensures easily eventual consistency, but only some policies are monotonic. We
consider a policy as monotonic if the add(p) operation do not moves any already
existing node in tree. The root and compact policies are not monotonic since
when the missing ascendants are added again, the orphan subtree moves to its
original place.

The advantage of monotonic policies is that the client of the tree CRDT will
not observe such move, and that a client operation on an orphan path do not
require a complex translation into an operation on the supporting set CRDT.

3.3 Complexity and optimisation

Lets assume that a hash table is used to implement the set of paths. Thus,
checking for all prefixes of path if they belongs to a set have an average time
complexity proportional to the length of the path. Thus, the time complexity
to apply a policy to a path is linear. Also, the time complexity to compute a
lookup tree is Θ(pk) in average, with p the number of paths in LS and k the
average length of these paths. The worst case time complexity is Θ(n2) with n
the number of paths in T .

However, at least for the monotonic policies, we can compute LT incremen-
tally, i.e. without parsing the whole set LS.
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skip When an orphan path is supposed to be added in the lookup, we drop
it. When an non-orphan path p is added, we add recursively all pa ∈ LS
with a ∈ Σ. When a path n is supposed to be removed in the lookup, we
remove all the paths that are prefixed by n. Moreover, a tree CmRDT can
send only the operation rmv(n) with n the common prefix of the subtree,
since the whole subtree will be removed.

reappear In the reappear policy, when an orphan path is removed we must
remove the reappeared path to ensure eventual consistency. This can be
done by marking the reappeared paths as “ghosts”. When path previously
marked as ghost is supposed to be added in the lookup, we unmark it.
When an orphan path n is supposed to be added in the lookup, we add all
the prefixes of n that are not existing and we mark them as ghost. When
a path n is supposed to be removed in the lookup, if n is the prefix of a
non-ghost path, we mark n as ghost, elsewhere we remove n and all the
ghost prefixes of n that are the prefixes of not any ghost.

4 Ordered trees

In this section, we present ordered trees, where the set of children of a node
is totally ordered. For this we need to add to the unordered trees presented
above, an additional information called Position Identifier (PI) which allows to
order the children. These position identifiers must be totally ordered to ensure
eventual consistency and defined within a dense space to allow insertion of a
node at an arbitrary position. These position identifiers can be associated to
nodes or edges.

To obtain position identifiers, an idea to use PI already defined for sequence
editing CRDTs such as Logoot [14], Woot [8], WOOTO [13], RGA [10] or Tree-
doc [9]. Such PIs are Unique Position Identifier (UPI) and thus constrain the
behavior of the trees to some kind of two-phases set that does not allow con-
current insertions of the same element or re-insertions. So, we propose a new
non-unique position identifier to allow such operations.

In the following figures, a plain arrow represents the child relation between
node, and a dotted arrow represents the order between children.

4.1 Unique positioning for nodes

We associate each node to an unique position identifier (UPI). The order be-
tween the children of a node is given by their UPI. Since only graph trees manage
nodes and since position identifiers are unique, we obtain a 2G-Tree. If a node is
added twice concurrently, even at the same place in the ordered tree, we obtain
two different nodes. The formal definition of the operation rmv do not change,
a node is a pair (element, UPI) and an edge is a pair of node. The formal
definition of operation add becomes :

• pre(add((n, u), (m, v)), (V,E)) ≡ (n, u) /∈ V ∧ (m, v) ∈ V ∧ unique(u)

• post(add((n, u), (m, v)), (V,E)) ≡ (n, u) ∈ V ∧ ((m, v), (n, u)) ∈ E

The conflict add||add does not occurs, since a node can only be added once
with an UPI. In figure 10, a replica produces add(Z,A) while another replica
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produces add(Z ′, B) concurrently, but they are considered as two different ele-
ments with same characteristics.

Figure 10: Concurrent operations add/add with node positioning

The conflict add(n,m)||rmv(N,F ) with m ∈ N and n /∈ N can be resolved
with the same policies defined for 2G-Tree in Section 2.5. In figure 11, we
represent the execution of two concurrent operations add(Z, Y )/rmv(Y ) with
the skip policy.

Figure 11: concurrent operations add/del with skip policy

A tree with UPI associated to nodes can be built using any sequential editing
UPIs. However the WOOT and RGA UPI requires tombstones and thus are
more adapted to a 2P CvRDT that contains these tombstones. For 2P CmRDT,
the Logoot or Treedoc UPI approaches are more suitable. The complexity of
the children order computation depends on the approach used. An example of
such construct is [6].

4.2 Unique positioning for Edges

To allow concurrent insertions on the same node at two different places in the
tree or to build edge or word tree, we propose to associate UPI to edges. The
order between the children of a node is given by the UPI of the outgoing edge.
In graph and edge trees an edge becomes a triple (m,n, u) with m and n two
nodes and u an UPI. In word trees, a path becomes u1a1u2a2u2 . . . unan with
ai elements of Σ and ui UPIs. The difference between ordered trees with edge
positioning and node positioning is illustrated in figures 12 and 10.
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Figure 12: Concurrent operations add/add with edge positioning

The formal definition of operation rmv does not change and the definition
of add becomes :

Graph Tree • pre(add(n,m, u), (V,E)) ≡ n /∈ V ∧m ∈ V ∧ unique(u)

• post(add(n,m, u), (V,E)) ≡ n ∈ V ∧ (m,n, u) ∈ E

Edge Tree • pre(add(n,m, u), E) ≡ ∃(z,m, v) ∈ E ∧ unique(u)

• post(add(n,m, u), E) ≡ (m,n, u) ∈ E

Word Tree • pre(add(n, p, u), T ) ≡ p ∈ T ∧ pun /∈ T ∧ unique(u)

• post(add(n, p, u), T ) ≡ pun ∈ T

Such an edge tree is a 2E-Tree since an edge can only be added once. And
such a word tree is a 2W-Tree since a path can only be added once. For graph
tree, we can manage node using any set CRDT to obtain GG-Tree, 2G-Tree,
LG-Tree, CG-Tree or OG-Tree. As for nodes UPI, any sequential editing UPI
can be chosen, but these are more or less adapted to the underlying set CRDT.
Logoot and Treedoc without tombstones are more appropriate to 2x and OG
CmRDT. While WOOT and RGA are more appropriate to LG-Tree, CG-Tree
and all CvRDT,

As for unordered trees, the conflicts between addition of a node and remove
of its father can be resolved using any connection policy. Conflicts between two
concurrent additions of the same element in graph trees can be resolved using
any mapping policy.

In graph tree with edge positioning, two concurrent insertion of a node at
the same place (same father and same order between children) generates two
edges (see Figure 13). In edge tree (and word tree), using a unique position
identifier enforces to generate two instances of the edge (and path in word tree).
To allow a different behavior, the position identifier must be non-unique.
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Figure 13: Two concurrent insertions at the same place with edge positioning

4.3 A new sequence editing CRDT : WOOTR

Non-unique position identifiers must be totally ordered and defined within a
dense space. To obtain such properties we define a new sequential editing CRDT
called Recursive-WOOT (WOOTR).

WOOTR elements are defined inductively upon an alphabet Σ (or set of
node).

• ` and a are elements

• a triple 〈a, e, f〉 is an element if a ∈ Σ and e and f are elements.

The elements ` and a mark respectively the begin and the end of a sequence.
When a character a is inserted between two elements p and n, we add the element
〈a, p, n〉. We call p the previous element and n the next element of this new
element. The set of the WOOTR elements constitutes the characters present in
the sequence. The elements are ordered using the WOOT algorithm [8] assuming
that elements with the same previous and next elements are ordered using their
character. For instance, starting from an empty sequence, if a replica inserts
a, followed by b, while another replica inserts c concurrently, we obtain the set
{〈a,`,a〉, 〈b, 〈a,`,a〉,a〉, 〈c,`,a〉} and the sequence is abc.

Since elements are not unique, they can be inserted concurrently by two
different replicas. However, they can also be added and removed concurrently.
Thus, as in any set, we need to manage these concurrent operations. Eventual
consistency can be achieved using a set CRDT such as LWW-Set, CG-Set or OR-
Set. Contrary to the original WOOT, we do not require to keep deleted elements
as tombstones since, when a remote insertion occurs, the WOOT algorithm can
find the place of the deleted previous or next element before inserting the element
itself. This is particularly suitable for CmRDT OR-Set and C-Set that do not
keep all tombstones.

The size of WOOTR elements can be proportional to the size of the docu-
ment. Due to this size, such a sequential editing CRDT may not be adapted to
realtime collaborative text editing [1]. However, we think that it can be useful
for trees, since in tree the element are distributed under different fathers, the
WOOTR elements grow more slowly.
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4.4 Non-unique position identifier

With non-unique position identifiers, only one edge (or path) will be present
in the tree in case of concurrent insertion of an element at the same place in
the tree. A non-unique position identifier can be used to order any variation of
graph, edge or word tree.

For instance, the WOOTR identifier can be added to edge in graph or edge
trees. Such edges are ordered pair (x,w) with the x the father node and w a
WOOTR element defined on the set of nodes. In word tree, a path becomes
w1 . . . wn a string of WOOTR elements defined on the alphabet.

5 Conclusion

In this report, we have proposed several tree conflict-free replicated data types
(CRDT). These data types are based on set CRDTs. As any CDRTs, tree
CRDTs are eventually consistent and converge without requiring any synchro-
nization.

The unordered tree data types are constructed using a tree representation
(graph, edge or word), a set CRDT, one connection policy and one mapping
policy (for graph and edge tree). Every combination of choices is possible and is
a tree CRDT. Each of the choice correspond to the desired semantic to resolve
the two or three different conflicts between operations. The choice of the set
CRDT defines the semantic of the concurrent addition and remove of an element.
The choice of the connection policy defines the semantic of concurrent remove
of an element and addition of a child. The choice of the mapping policy, if
required, defines the semantic of the concurrent additions of an element. With
such a construct we give to the application programmer the entire control of the
behavior of the tree CRDT.

The policies designed make some arbitrary choices to resolve the conflicts.
We think that arbitrary choices are mandatory to ensure scalability in large-scale
system. However, the application may have a particular semantic on nodes or
operations, or the final user may be required to resolve the conflict. To facilitate
such mechanism, we can adapt the root policy and the zero policy. We can adapt
the root policy to place orphan elements under a special “lost-and-found” node
and the zero policy to present to the application the conflicting nodes and edge
separately from the tree.

The ordered tree data types are constructed upon unordered trees CRDT.
They consist in associating a totally ordered position identifier to elements of
the tree. These position identifier comes from existing sequence editing CRDT
and ensure eventual consistency without synchronisation. Ordered trees share
the same behavior than the corresponding unordered tree except that a tree
node can be add at different positions under another node. The choice between
the kinds of position identifiers is a question of performance and adaptability
with the underlying set CRDT. Moreover, we introduce a new sequence editing
CRDT called WOOTR. This sequence editing CRDT is the first to allow rein-
troduction of an element and to consider that concurrent insertion of an element
at the same position is the same operation.

All the combination presented can be used for any application that require
a tree. However, we think that some combination are more adapted to some
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application context. For instance the unordered graph trees are more adapted
to applications managing a composite pattern or a file system data structure.
Indeed, in Unix-like files system, the hard links allow to place a file or a repos-
itory in several different repositories. One another hand, ordered word trees
seems more adapted to collaborative editing of structured documents [7].

Finally, some constructs, especially trees builds on 2P-Set, are very efficient,
other variations and some policies, especially the several policy in graph and
edge trees, are quite costly in term of computation complexity. We need to
establish the actual scalability of the constructs trough experimentation on re-
alistic data set since the actual computation cost depends highly on the degree
of concurrency.
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