Hash & crypto

Sergey Kirgizov

September 3, 2024

The goal of these exercises is to learn how to use cryptographic hashing and asymmetric encryption. You can
use any programming language of your choice. My examples will be in Python.

1 Hash functions

There is a piece of code with helper function to hash a string.

from hashlib import sha384
def strhash (v):
return sha384 (v.encode()).hexdigest()

example
strhash ('DIJON')

EXERCISE 1 : Use a cryptographic hash function to organize a simple password store. Your system should have
at least three functions:

e register (user, password) to create a new user with a password;
e login (user, password) to check if a user entered a good password;
e change (user, oldpassword, newpasswod) to change the password.

You can store the data in a file or directly in RAM.

EXERCISE* 2 : Think and implement an non-synchronous version of the game rock-paper-scissors. How we
should proceed in order to be able to play this game by email without giving the other person an advantage?

EXERCISE 3 : Write a basic transaction storage system. The system should store the data in a file and support
the following functions

e add (person1, person2, amount, date) to add a new transaction.
e list_transactions () to show the list of all transactions.
e verify () to check the integrity of the transaction list.

Every transaction should be stored together with a hash value calculated from the data of the current transaction
and the hash value of the previous transaction. If someone or something changes the data in the file the function
verify() can be used to detect the problem. In what cases integrity verification will not be possible?

EXERCISE* 4 : Add a new function, balance (person), to be able to calculate how much money the specified
user has.

2 RSA by hand

The simple version of RSA cryptosystem is described below.

Key generation
1. Choose two prime numbers p and q.
. Calculate their product n = pgq.
. Calculate the Euler totient function ¢(n) = (p — 1)(g — 1).
. Choose an integer e such that 1 < e < ¢(n) and gcd(e, ¢(n)) = 1.
. Find d such that de =1 (mod ¢(n))

. The couple (e, n) is a public key.

N o o W N

. The couple (d, n) is a private key.

Encryption
To encrypt the message represented by an integer m such that 0 < m < n, we need to calculate m¢ (mod n).

Decryption
To decrypt the message represented by an integer w, we calculate w9 (mod n).

li? EXERCISE 5 : Implement the simple version of RSA cryptosystem using integers. The key generation can be
done manually.

Example

Public key is (5,119).

Private key is (77,119).

The message is m = 99.

Encrypted message is w = m> (mod 119) = 29.
Decryption 2977 (mod 119)

Can you find which p and g are used in this case?

li? EXERCISE* 6 : Implement the automatic key generation for the simple version of RSA.

BE CAREFUL with small numbers, brute-force attacks are reall
In the real-world applications one must choose very big p, g and scrupulously implement some additional mech-
anisms (proper padding scheme, etc) to confront known problems of naive RSA. See |https://en.wikipedia.org/

wiki/RSA_(cryptosystem) for more details.

Other asymmetric encryption algorithm also exists: Elliptic-curve cryptography, Diffie-Hellman key exchange,
ElGamal, Unbalanced oil and vinegar scheme. etc...

See also https://en.wikipedia.org/wiki/Post-quantum_cryptography

3 RSA by lib

Here we will use a library “pycryptodome” that implements RSA. You can choose another library if you wish.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Post-quantum_cryptography

P EXERCISE 7 : Install the library:

pip install pycryptodome

lf? EXERCISE 8 : Read, understand and test the following code

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP

Key generation

key_pair = RSA.generate(4096)

pubk = key_pair.public_key()

print (f'Public key ({pubk.e}, {pubk.n})"')

print (f'Private key ({key_pair.d}, {key_pair.n})")

store the pair of keys

= open('private_and_public.pem', 'wb"')
.write(key_pair.export_key('PEM"))
.close()

- —h —h #*

store only the public key

= open('public.pem', 'wb")
.write(pubk.export_key('PEM'))
.close()

- —h —h

Read the key if needed

f = open('public.pem','r")

key = RSA.import_key(f.read())
f.close()

H ¥ B H

Encryption

m = 'A very secret message'
m_in_bytes = m.encode('utf-8")
encryptor = PKCS1_OAEP.new(pubk)
w = encryptor.encrypt (m_in_bytes)
print ('Encrypted text:')

print (w)

of course we can store or send w.

decryptor = PKCS1_OAEP.new(key_pair)
decrypted_message = decryptor.decrypt (w)
print('Decrypted text:')
print(decrypted_message)

See also:
https://cryptobook.nakov.com/asymmetric-key-ciphers/rsa-encrypt-decrypt-examples
https://pycryptodome.readthedocs.io/en/latest/src/public_key/rsa.html

If‘f’ EXERCISE* 9 : Learn how to sign messages with RSA |https://pycryptodome.readthedocs.io/en/latest/src/
signature/pkcs1_vi1_5.html

https://cryptobook.nakov.com/asymmetric-key-ciphers/rsa-encrypt-decrypt-examples
https://pycryptodome.readthedocs.io/en/latest/src/public_key/rsa.html
https://pycryptodome.readthedocs.io/en/latest/src/signature/pkcs1_v1_5.html
https://pycryptodome.readthedocs.io/en/latest/src/signature/pkcs1_v1_5.html

	Hash functions
	RSA by hand
	RSA by lib

